Cold preservation-warm reoxygenation increases hepatocyte steady-state Ca\(^{2+}\) and response to Ca\(^{2+}\)-mobilizing agonist

AZIZ ELIMADI AND PIERRE S. HADDAD
Membrane Transport Research Group and Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada H3C 3J7

Received 11 April 2001; accepted in final form 21 May 2001

Cold preservation-warm reoxygenation increases hepatocyte steady-state Ca\(^{2+}\) and response to Ca\(^{2+}\)-mobilizing agonist. Am J Physiol Gastrointest Liver Physiol 281: G809–G815, 2001.—Although the role of Ca\(^{2+}\) in liver transplantation injury has been the object of several studies, direct evidence for alterations in intracellular Ca\(^{2+}\) homeostasis after cold preservation-warm reoxygenation (CP/WR) has never been presented. We thus investigated the effects of CP/WR on steady-state Ca\(^{2+}\) and responses to a Ca\(^{2+}\)-mobilizing agonist. Isolated rat hepatocytes were suspended in University of Wisconsin solution, stored at 4°C for 0, 24, and 48 h, and reoxygenated at 37°C for 1 h. Cytosolic Ca\(^{2+}\) was measured in single cells by digitized fluorescence videomicroscopy. CP/WR caused a significant increase in steady-state cytosolic Ca\(^{2+}\), which was inversely proportional to cell viability. Pretreatment of hepatocytes with an agent that protects mitochondrial function attenuated the increase in steady-state cytosolic Ca\(^{2+}\) and improved hepatocyte viability. Ca\(^{2+}\) responses to the purinergic agonist ATP also increased significantly as a function of cold storage time. This increase was related to an increase in the size of inositol 1,4,5-trisphosphate-sensitive Ca\(^{2+}\) stores and subsequent capacitative Ca\(^{2+}\) entry. Thus CP/WR significantly perturbs steady-state hepatocellular Ca\(^{2+}\) and responses to Ca\(^{2+}\)-mobilizing agonists, which may contribute to hepatocyte metabolic dysfunction observed after CP/WR.

LIVER TRANSPLANTATION HAS become an accepted therapy for end-stage liver disease. During transplantation, the liver suffers injury not only from cold ischemia due to the long-term cold storage but also from reperfusion with warm oxygenated blood. This results in primary graft dysfunction, which remains a major clinical problem (1, 8, 15). Among hepatocellular perturbations, dysfunction in liver cell volume (30, 40), bile secretion (26), drug metabolism (2), and mitochondrial function (37) has been reported as a result of cold preservation/warm reoxygenation (CP/WR). The exact mechanisms underlying these functional disorders are still not understood, but the involvement of intracellular Ca\(^{2+}\) has been proposed.

The hypothesis that intracellular Ca\(^{2+}\) plays a crucial role in liver transplantation injury is based essentially on the indirect observation that inhibitors of L-type voltage-dependent Ca\(^{2+}\) channels, such as nisoldipine or verapamil, improve the viability of preserved hepatocytes (45) or of liver allografts in the rat (9, 44). However, no evidence has ever been found for the presence of voltage-dependent Ca\(^{2+}\) channels on hepatocytes, either functionally (31) or at the level of mRNA (21). The effects of such Ca\(^{2+}\) channel antagonists may thus result from nonspecific beneficial actions on hepatocytes (22, 29) or from effects on Kupffer cells (20, 43). Hence, direct evidence for the perturbation of hepatocellular Ca\(^{2+}\) homeostasis after CP/WR has never been presented.

On the other hand, recent studies from our laboratory (17) and that of Kim and Southard (25) have shown that acute hypothermia alone leads to a rapid increase in steady-state intracellular Ca\(^{2+}\) in isolated hepatocytes (17). Kim and Southard (25) have shown that, after this initial increase, cytosolic Ca\(^{2+}\) subsequently decreases as cold preservation time is prolonged to 24 and 48 h (25). Both studies (17, 25) addressed perturbation of hepatocyte Ca\(^{2+}\) during simple cold storage. Information is still lacking on the effect of the overall process of liver transplantation, i.e., CP/WR (conditions that the grafted organ normally encounters), on liver cell Ca\(^{2+}\) homeostasis.

Intracellular Ca\(^{2+}\) homeostasis can be modulated by many extracellular stimuli, including ATP and related nucleotides, which have significant biological effects on many tissues and cell types such as hepatocytes. For instance, ATP has been shown to stimulate glycogen phosphorylase activity in hepatocytes, which is the rate-limiting step in liver glycogenolysis (24). ATP is also involved in intercellular signal propagation between hepatocytes and between hepatocytes and bile duct cells in the rat liver (38). Such nucleotides are released from hepatocytes themselves, from sympathetic nerve endings, as well as platelets and damaged cells during injury such as ischemia-reperfusion. Released nucleotides are known to trigger Ca\(^{2+}\) mobilization in hepatocytes (12). This mobilization consists of

Address for reprint requests and other correspondence: A. Elimadi, Groupe de Recherche en Transport Membranaire et Département de Pharmacologie, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec, Canada H3C 3J7 (E-mail: elimadi@magellan.umontreal.ca.).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
two phases, namely Ca\(^{2+}\) release from intracellular stores and Ca\(^{2+}\) influx across the plasma membrane (42). Should Ca\(^{2+}\) homeostatic mechanisms be affected by CP/WR, alterations in Ca\(^{2+}\)-dependent hepatocyte functions such as metabolism and bile secretion may ensue and form, at least in part, the basis of primary graft dysfunction.

We thus sought to evaluate the impact of long-term CP/WR on hepatocyte Ca\(^{2+}\) homeostasis, particularly at the level of steady-state intracellular Ca\(^{2+}\), and of Ca\(^{2+}\) responses to the purinergic agonist ATP. We used an in vitro model that appropriately mimics CP/WR in liver cells (13, 17, 18, 39–41). We report that CP/WR significantly increases steady-state hepatocellular Ca\(^{2+}\). Responses to the Ca\(^{2+}\)-mobilizing agent ATP are also increased, and this was related to an increase in the size of intracellular inositol 1,4,5-trisphosphate (IP\(_3\))-sensitive Ca\(^{2+}\) stores and in the subsequent capacitative Ca\(^{2+}\) entry.

MATERIALS AND METHODS

Hepatocyte isolation. Animals used in this study were treated in accordance with the guidelines of the Canadian Council on the Care of Animals, and all experimental protocols were approved by our university’s ethics committee.

Hepatocytes were isolated from the livers of fed male Sprague-Dawley rats weighing 200–250 g (Charles River Laboratories, St. Constant, QC, Canada) by a variation of the previously described method (32). IP\(_3\)-induced Ca\(^{2+}\) mobilization was carried out in the presence of 10 \(\mu\)M FCCP, a mitochondrial decoupler, to eliminate the participation of mitochondria in intracellular Ca\(^{2+}\) handling during this experiment. Plasma membranes were permeabilized by adding 50 \(\mu\)g/ml saponin.

Digitized fluorescence videomicroscopy for intracellular Ca\(^{2+}\) measurement at single cell level. At the end of a 1-h warm culture period, hepatocytes were loaded with 5 \(\mu\)M fura 2-AM (Molecular Probes, Eugene, OR) for 30 min at room temperature. Coverslips were then mounted on an inverted fluorescence microscope and continually perfused with HEPES buffer (138 mM NaCl, 3.8 mM KCl, 1.2 mM MgSO\(_4\), 1.2 mM KH\(_2\)PO\(_4\), 5 mM glucose, 1 mM pyruvate, and 10 mM HEPES, pH 7.4, at 37°C). In a subset of experiments, mitochondria were permeabilized in the presence of 5 \(\mu\)M m-iodobenzylguanidine (MIBG) to a concentration of 10 \(\mu\)M to allow the mitochondria to be visualized. Fluorescence experiments were performed at 37°C in the stirred thermostated cuvette of a SPEX model CMT-111 spectrofluorometer (Rayonet Scientific, St. Laurent, QC, Canada) in a “cytosol-like” medium (120 mM KCl, 10 mM NaCl, 1 mM KH\(_2\)PO\(_4\), 1 mM MgCl\(_2\), 30 mM HEPES, and 1 mM ATP, pH 7.4, at 37°C). This medium also contained an ATP-generating system (25 mM creatine phosphate, 25 U/ml creatine kinase, and 5 mM sodium pyrophosphate) and 10 \(\mu\)M G810, a mitochondrial decoupler, to eliminate the participation of mitochondria in intracellular Ca\(^{2+}\) handling during this experiment. Plasma membranes were permeabilized by adding 50 \(\mu\)g/ml saponin.

RESULTS

Effect of cold preservation followed by warm reoxygenation on hepatocyte steady-state intracellular Ca\(^{2+}\) and cell viability. Steady-state intracellular free Ca\(^{2+}\) concentration of control cells under our experimental conditions was 95 ± 3 nM (n = 151 cells). As shown in Fig. 1, when hepatocytes were preserved for 24 and 48 h in UW followed by 1 h of warm reoxygenation, steady-state intracellular Ca\(^{2+}\) concentration increased significantly to 224 ± 11 and 286 ± 21 nM, respectively (n = 100 and 130 cells, respectively; P < 0.05 for either group compared with control unstored
cells). This increase in hepatocyte intracellular Ca$^{2+}$ after long-term CP/WR was accompanied by a significant decrease in cell viability (Table 1).

Protection of mitochondrial functions attenuates increase in steady-state intracellular Ca$^{2+}$ after CP/WR. Mitochondria have been widely implicated in both warm and cold ischemia-reperfusion injury (10, 11, 37) and in intracellular Ca$^{2+}$ homeostasis (36). Hepatocytes were thus incubated with MIBG, a pharmacological agent shown (25) to protect mitochondrial functions altered by simple cold storage. MIBG was present throughout the CP/WR periods. As shown in Fig. 1, MIBG (10 μM) has no effect on steady-state intracellular Ca$^{2+}$ in control unstored cells. However, when hepatocytes were preserved for 24 and 48 h at 4°C followed by 1 h of warm reoxygenation in the continued presence of M-IGB, the rise of steady-state intracellular Ca$^{2+}$ observed in untreated cells was significantly attenuated. Two-way ANOVA uncovered a significant interaction (P < 0.05) between MIBG treatment and cold preservation time. This indicates that the protective effect of MIBG was greater in the 48-h than in the 24-h preserved group. Interestingly, treatment of isolated hepatocytes with MIBG was also associated with a modest yet statistically significant improvement in hepatocyte viability after CP/WR (Table 1). Also, similarly to results on steady-state Ca$^{2+}$, MIBG did not have any effect on cell viability in unstored control cells.

Effect of CP/WR on hepatocyte Ca$^{2+}$ responses to the purinergic agonist ATP. ATP is known to act on P$_{2Y2}$ receptors (previously known as P$_{2X}$ receptors) coupled to the phosphatidylinositol-Ca$^{2+}$ signaling pathway and to increase cytosolic free Ca$^{2+}$ concentration in rat hepatocytes (12). ATP (100 μM) induced a typical biphasic Ca$^{2+}$ response in all cells. Responses were quantified by measuring the area under the Ca$^{2+}$ vs. time curve (AUC) as shown in Fig. 2. Reoxygenating the hepatocytes after preserving them at 4°C for 24 and 48 h significantly increased the total amount of Ca$^{2+}$ mobilized by ATP (Fig. 2, A and C). We then used EGTA (4 mM), a known Ca$^{2+}$ chelator, to eliminate the Ca$^{2+}$ influx phase of the ATP-induced Ca$^{2+}$ response and hence to isolate Ca$^{2+}$ release from intracellular stores. CP/WR also significantly increased the quantity of Ca$^{2+}$ mobilized by ATP in the presence of EGTA (Ca$^{2+}$-free conditions, Fig. 2, B and C), indicating a greater release from internal stores. In physiological conditions, the rise in Ca$^{2+}$ response to ATP was dependent on cold preservation time (P < 0.05, for 24 and 48 h vs. unstored controls (0 h) as well as between 24- and 48-h preservation groups). On the other hand, in Ca$^{2+}$-free conditions, the increase in ATP response (AUC) in relation to unstored controls was similar for 24- and 48-h groups. This was confirmed by two-way ANOVA, which uncovered a significant interaction between extracellular Ca$^{2+}$ status and cold preservation time (P < 0.05). Our results further indicate that the capacitative Ca$^{2+}$ entry that follows mobilization of internal Ca$^{2+}$ stores was also increased as a function of cold preservation time as indicated by the significant interaction (P < 0.05) of the two-way ANOVA.

Effect of CP/WR on IP$_{3}$-sensitive Ca$^{2+}$ pools. The Ca$^{2+}$ mobilized from intracellular stores by G$_{q}$-coupled receptor agonists, such as ATP, comes mainly from IP$_{3}$-sensitive Ca$^{2+}$ pools (42). The results of Fig. 2, B and C, obtained in Ca$^{2+}$-free conditions thus prompted us to investigate whether the potency (EC$_{50}$) of IP$_{3}$ or the size (E$_{max}$) of IP$_{3}$-sensitive Ca$^{2+}$ pools was affected by CP/WR. For this purpose, we used permeabilized hepatocytes stimulated with exogenous IP$_{3}$. Figure 3 shows the effects of increasing concentrations of IP$_{3}$ on Ca$^{2+}$ mobilization from IP$_{3}$-sensitive Ca$^{2+}$ pools in hepatocytes permeabilized after being submitted to

![Graph showing hepatocyte steady-state intracellular Ca$^{2+}$ after cold preservation followed by warm reoxygenation and effect of m-iodobenzylguanidine (MIBG).](http://ajpgi.physiology.org/)

Table 1. Effect of MIBG on hepatocyte viability after cold preservation followed by warm reoxygenation

<table>
<thead>
<tr>
<th>Preservation Time, h</th>
<th>Control</th>
<th>+ 10 μM MIBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84.6 ± 1</td>
<td>82.6 ± 1.8</td>
</tr>
<tr>
<td>24</td>
<td>64.7 ± 0.6*</td>
<td>70.7 ± 1.5†</td>
</tr>
<tr>
<td>48</td>
<td>56.9 ± 1.5*</td>
<td>63.7 ± 1.7†</td>
</tr>
</tbody>
</table>

Values are means ± SE from at least 4 different cell preparations. Hepatocyte preparations were treated with 10 μM m-iodobenzylguanidine (MIBG) or the equivalent volume of saline solution, preserved in cold University of Wisconsin (UW) solution at 4°C for 24 or 48 h, and then reoxygenated at 37°C for 1 h. Hepatocyte viability was measured by means of trypan blue exclusion (similar relationships and statistical significance were obtained with lactate dehydrogenase release, data not shown). *P < 0.05, significantly different from untreated cells (saline vehicle of MIBG).
As seen from both Fig. 3 and the values presented in Table 2, the \(E_{\text{max}} \) of IP\(_3\)-sensitive Ca\(^{2+}\) pools increased in a statistically significant manner in both groups of cold-preserved cells (24 or 48 h) compared with unstored controls. Interestingly, and in accordance with the results shown in Fig. 2, B and C, there was no difference between the 24- and 48-h groups at the level of the increased \(E_{\text{max}} \) for IP\(_3\). On the other hand, the EC\(_{50} \) of IP\(_3\) was not affected by our experimental conditions (Table 2).

DISCUSSION

In the current study, we measured hepatocyte intracellular Ca\(^{2+}\) concentration directly at the single cell level in experimental conditions mimicking the CP/WR of liver transplantation. We present, for the first time, direct evidence showing that the intracellular Ca\(^{2+}\) homeostasis of isolated hepatocytes is altered when they are submitted to CP/WR. Indeed, steady-state intracellular Ca\(^{2+}\) concentration is increased after CP/WR of the hepatocytes, and this increase is accom-

Table 2. Effect of cold preservation followed by warm reoxygenation on potency and efficacy of IP\(_3\)

<table>
<thead>
<tr>
<th>Preservation Time, h</th>
<th>EC(_{50}), (\mu \text{M}) IP(_3)</th>
<th>(E_{\text{max}}), (\mu \text{M}) Ca(^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.4 ± 2.1</td>
<td>300 ± 34</td>
</tr>
<tr>
<td>24</td>
<td>11.3 ± 4.6</td>
<td>497 ± 54*</td>
</tr>
<tr>
<td>48</td>
<td>8.8 ± 0.7</td>
<td>523 ± 63*</td>
</tr>
</tbody>
</table>

Values represent means ± SE from at least 4 different cell preparations. Hepatocytes were preserved in cold UW solution at 4°C for 0, 24, and 48 h and then reoxygenated at 37°C for 1 h. Hepatocytes were then permeabilized with saponin, and Ca\(^{2+}\) was mobilized from the IP\(_3\)-sensitive calcium pools by addition of different concentration of synthetic IP\(_3\). Ca\(^{2+}\) was measured in cell suspensions using fura 2 fluorescence as described in MATERIALS AND METHODS. Efficacy (\(E_{\text{max}}\)) and potency EC\(_{50}\) values were derived from the best nonlinear Michaelian fit of the data means for each group determined with a commercially available software (Micropharm INSERM; 46). * \(P < 0.05 \), significantly different from unstored control (0 h).
panied by a decrease in hepatocyte viability. Consistent with our observation, an increase in basal intracellular Ca2+ associated with a decrease in cell viability has also been reported (6) during oxidative stress in rat hepatocytes. This brings forth the interesting possibility that production of reactive oxygen species may be implicated in mediating the increase in steady-state cytosolic Ca2+ in hepatocytes subjected to CP/WR.

Recent research (37) has established that liver mitochondria are seriously damaged during CP/WR. Furthermore, mitochondria have been shown (3, 36) to participate actively in intracellular Ca2+ homeostasis. We thus used MIBG as a pharmacological tool to assess the implication of mitochondria in the observed effects of CP/WR on hepatocyte cytosolic Ca2+. This agent is known to prevent mitochondrial Ca2+ efflux in isolated hepatocytes without signs of cytotoxicity (23). MIBG has recently been shown (25) to protect mitochondrial functions altered by cold preservation. In the present study, pretreatment of hepatocytes with MIBG partially but significantly attenuated the elevation in steady-state intracellular Ca2+ observed when hepatocytes were subjected to CP/WR. No effect of this agent was observed on either steady-state intracellular Ca2+ or on cell viability in unstored control cells (0 h). This confirms that MIBG has no effect on hepatocellular Ca2+ and viability under normal physiological conditions. Interestingly, pretreatment of the hepatocytes with MIBG slightly but significantly improved cell viability after CP/WR. This is in accordance with the findings of Kim and Southard (25) who showed that MIBG ameliorates both mitochondrial functions and ATP regeneration in hepatocytes exposed to long-term cold preservation. Cyclosporin A, which possesses the same molecular mechanism as MIBG at the mitochondrial level, has recently been reported (16) to exert similar protective effects against reoxygenation injury in isolated rat cardiomyocytes. Both agents have long been known to inhibit mitochondrial permeability transition (MPT) (47). Furthermore, MPT has been shown to be the hallmark of mitochondrial damage observed in cold preserved-warm perfused isolated rat liver (27) as well as in warm ischemia-reperfusion injury (11). Our results thus support the notion that alterations in mitochondrial function after CP/WR are caused by opening of the MPT pore. This leads to the release of Ca2+ from mitochondria, thus reducing their Ca2+-buffering capacity and increasing intracellular Ca2+ under these pathological conditions. Indeed, treatment of hepatocytes with the mitochondrial protector and MPT inhibitor MIBG enhances mitochondrial function after CP/WR. Consequently, mitochondrial Ca2+ storage capacity is restored, thus helping to partly prevent the rise of steady-state intracellular Ca2+ observed after CP/WR.

To gain further insight into the perturbations of hepatocellular Ca2+ homeostasis after long-term CP/WR, we investigated the effects of these conditions on the Ca2+ responses to the purinergic agonist ATP. The results of the present study clearly demonstrate that compound Ca2+ responses to ATP (as evaluated by AUC analysis) are increased as a function of cold preservation time. As mentioned previously, these compound responses are generally composed of two phases, namely Ca2+ release from intracellular stores and Ca2+ influx across the plasma membrane (42). We therefore used EGTA-induced chelation of extracellular Ca2+ and show that the increase in AUC, observed in response to ATP after CP/WR, was partly due to an increase in agonist-induced Ca2+ release from intracellular stores.

ATP is known to stimulate IP\textsubscript{3} formation, which in turn activates Ca2+ release from the endoplasmic reticulum, generally considered as the principal IP\textsubscript{3}-sensitive Ca2+ store (12). We have therefore used permeabilized hepatocytes challenged with exogenous IP\textsubscript{3} to examine the effect of CP/WR on the sensitivity and storage capacity of IP\textsubscript{3}-sensitive Ca2+ stores. We found that the E\textsubscript{max} of the IP\textsubscript{3}-sensitive Ca2+ pools increased with the time of preservation, whereas the EC\textsubscript{50} of IP\textsubscript{3} in mobilizing Ca2+ was not altered. Our results thus suggest that responses to any Ca2+-mobilizing agonist (such as α\textsubscript{1}-adrenergic agonists angiotensin II or vasoressin) will be expected to increase as a function of cold preservation time for a given amount of IP\textsubscript{3} produced.

Recent studies (28) have shown that IP\textsubscript{3}-sensitive Ca2+ pools can be influenced by intracellular Ca2+ level. An increase in steady-state intracellular Ca2+ leads to an increase in the size of IP\textsubscript{3}-sensitive Ca2+ pools, whereas a decrease in cytosolic Ca2+ reduces the size of these pools. It is therefore possible that the increase in steady-state Ca2+ that we observed after long-term CP/WR leads to a greater capacity of IP\textsubscript{3}-sensitive Ca2+ pools to store Ca2+ and hence to a greater response to Ca2+-mobilizing agonists. In addition, Missiaen et al. (32) demonstrated that increases in cytosolic Ca2+ sensitize IP\textsubscript{3}-sensitive pools to IP\textsubscript{3}, so that the increased steady-state Ca2+ after CP/WR may also have contributed to enhance the response to Ca2+-mobilizing agonists.

Finally, our results suggest that capacitative Ca2+ entry was also increased in a preservation time-dependent manner (the part of the ATP response inhibited by EGTA). Indeed, the Ca2+ entry phase of the response to Ca2+-mobilizing agonists is known to be regulated by the Ca2+ content of the stores, a process referred to as store-operated or capacitative Ca2+ entry (33). It is thus conceivable that part of the rise in cytosolic Ca2+ observed after CP/WR (possibly that part not prevented by MIBG) was related to an increased tonic influx of Ca2+ from the extracellular milieu through conductive pathways.

It is well known that the endoplasmic reticulum plays an important role in Ca2+ storage and signaling and in the folding of newly synthesized membrane and secretory proteins, reactions that are strictly Ca2+ dependent (for review, see Ref. 34). Therefore, a perturbation of the IP\textsubscript{3}-sensitive Ca2+ stores might alter these functions and participate in the functional disorders of CP/WR. In agreement with this assumption,
Pinton et al. (35) recently found that overexpression of the procoagulene Bcl-2 reduces both the loading of intracellular Ca\(^{2+}\) stores and the capacitative Ca\(^{2+}\) influx. In addition, overexpression of the Bcl-2 transgene protects mouse liver and cardiac cells from ischemia-reperfusion injury (5, 7). Thus conditions with a reduced size of IP\(_3\)-sensitive Ca\(^{2+}\) pools are associated with less ischemia-reperfusion injury. Conversely, a weakness in the functions of the Bcl-2 family of proteins (for instance, reduced inhibition of MPT; 14) could participate in the deleterious effects of CP/WR on hepatocyte Ca\(^{2+}\) homeostasis presented herein.

In conclusion, we find that in hepatocytes, CP/WR causes a significant increase in steady-state cytosolic Ca\(^{2+}\) concentration that is associated with a decrease in cell viability. The elevation in the steady-state Ca\(^{2+}\) can be significantly attenuated by protecting mitochondrial functions. Moreover, responses to the purinergic agonist ATP are also increased, and this is due to an increase in the size of IP\(_3\)-sensitive Ca\(^{2+}\) pools as well as in capacitative Ca\(^{2+}\) entry. This alteration in both the steady-state intracellular Ca\(^{2+}\) and in the response to Ca\(^{2+}\)-mobilizing agonists might contribute to the primary graft dysfunction observed after CP/WR injury of livers undergoing transplantation.

We thank Dr. Rémy Sauvé for critical review of the manuscript.

This work was supported by Canadian Institutes of Health Research Operating Grant MT-14759. A. Elimadi received postdoctoral Operating Grant MT-14759. A. Elimadi received postdoctoral fellowship from the Membrane Transport Research Group (Research Center of the Québec Fonds pour la Formation des Chercheurs et l’Aide à la Recherche) and the Canadian Association for the Study of the Liver, graciously provided by AXCAN Pharma (St. Hilaire, QC, Canada). P. S. Haddad is a Senior Research Scholar of the Fonds de la Recherche en Santé du Québec.

A portion of this work was presented at the annual meeting of the American Gastroenterological Association, Digestive Disease Week 2000, San Diego, CA and has been published previously in abstract form (Gastroenterology 118: A913, 2000).

REFERENCES

38. Schlosser SF, Burgstahler AD, and Nathanson MH. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci USA 93: 9948–9953, 1996.

G815 CALCIUM HOMEOSTASIS IN COLD PRESERVATION INJURY