Role of nitric oxide in β_3-adrenoceptor activation on basal tone of internal anal sphincter

Kuldis S. Banwait and Satish Rattan

Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Submitted 27 December 2002; accepted in final form 30 April 2003

Banwait, Kuldis S. and Satish Rattan. Role of nitric oxide in β_3-adrenoceptor activation on basal tone of internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 285: G547–G555, 2003. First published May 7, 2003; 10.1152/ajpgi.00545.2002.—Effects of activation of β_3-adrenoceptor (β_3-AR) have not been determined in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). The effects of disodium (R,R)-5-[2-[2–3-chlorophenyl)-2-hydroxyethyl]-aminopropyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316243), a selective β_3-AR agonist, on the basal smooth muscle tone and direct release of nitric oxide (NO) by circular smooth muscle strips of the opossum IAS were determined. We also examined the presence of endothelial nitric oxide synthase (eNOS) protein by Western blot studies. CL 316243 produced a concentration-dependent relaxation of the smooth muscle that remained unmodified by different neurohumoral antagonists. The smooth muscle relaxation by CL 316243 was selectively antagonized by L 748337, a potent and selective inhibitor of eNOS. Single signal-transduction pathways including Gs, activated by β_3-AR (5, 40), were used by β_3-AR activation. The studies may have therapeutic implications in anorectal motility disorders.

internal anal sphincter smooth muscle; nitric oxide synthase; nonadrenergic noncholinergic relaxation; Hirschsprung’s disease

THE β_3-ADRENOCEPTOR (β_3-AR), discovered in 1989 (11), has been identified in different regions of gastrointestinal (GI) tract, ureter, urinary bladder, uterus, prostate, white fat, and in the cardiovascular system in humans (1–3, 8, 12, 28, 31, 36). We have shown (10) that the characteristics of the relaxation of the lower esophageal sphincter (LES) smooth muscle in response to activation of the β_3-AR are different from relaxation in response to activation of the β_1- or β_2-AR: β_3-AR activation by the selective agonist is characteristic- ically antagonized by the β_3-selective antagonist.

It is well known that stimulation of β-ARs (β_1, β_2, or β_3) causes release of Gα, which then activates adenylyl cyclase to produce cAMP (34, 41). Elevated levels of cAMP produce relaxation of smooth muscle via activation of cAMP-dependent protein kinase (PKA). There are significant differences in the intracellular signaling pathways used by β_1- and β_2- vs. β_3-AR subsequent to activation of PKA. Fully activated PKA may cause phosphorylation of β_1- and β_2-ARs, leading to their inactivation (7, 26). β_3-ARs lack PKA phosphorylation sites; desensitization or internalization of β_3-receptors is relatively less prevalent compared with β_1- and β_2-receptors (15, 33). In addition, it has been shown that endothelial nitric oxide synthase (eNOS) may partly regulate smooth vascular muscles in response to activation of the β_3-AR (5, 40).

We determined the effect of selective β_3- vs. nonselective β-AR agonists in the basal tone of the internal anal sphincter (IAS) and its mechanism of action. Effects of such agents on the basal IAS tone and understanding the basic mechanisms by which they induce relaxation of the smooth muscle may provide a basis for development of potential therapeutics for various conditions such as constipation with megarectum, anal fissures, and Hirschsprung’s disease. The purpose of the present investigation is twofold: 1) to examine effect of β_3-AR activation in the basal IAS tone and 2) to examine the role of NOS in β_3-AR-induced relaxation of the spontaneously tonic smooth muscle of the IAS.

MATERIALS AND METHODS

Preparation of smooth muscle strips. Smooth muscle strips from the IAS of opossums were prepared for recording of isometric tension as described previously (32). Briefly, the animals were anesthetized with pentobarbital sodium (40–50 mg/kg ip), and the entire anal canal was isolated and transferred to oxygenated (95% O_2-5% CO_2) Krebs physiological solution (in mM: 118.07 NaCl, 4.69 KCl, 2.52 CaCl_2, 1.16 MgCl_2, 1.25 NaH_2PO_4, 26.2 N_2HPO_4, 11 D-glucose, 10 HEPES, and 95% O_2–5% CO_2). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
MgSO₄, 1.01 NaH₂PO₄, 25 NaHCO₃, and 11.10 glucose. The IAS was carefully freed of striated muscle fibers belonging to the external anal sphincter as well as other extraneous tissues such as large blood vessels. The anal canal was opened and pinned flat onto a dissecting tray containing oxygenated Krebs solution; the mucosal side was bathed directly by the Krebs solution. The mucosal and submucosal layers were removed by dissection, and circular smooth muscle strips of the IAS circular smooth muscle (~1 × 10 mm) were prepared.

All protocols for use of animals were approved by Thomas Jefferson University’s Animal Care and Use Committee.

Measurement of isometric tension. The smooth muscle strips were secured at both ends with silk sutures and transferred to muscle baths that contained 2 ml oxygenated Krebs solution (35°C). One end of each smooth muscle strip was anchored at the bottom of the muscle bath, and the other end was attached to a force transducer (model FTO3; Grass Instruments, Quincy, MA) for the measurement of isometric tension on a computerized PowerLab/800. The smooth muscle strips were stretched at 10 mN tension initially and allowed to equilibrate for at least 1 h with intermittent washings. During this period, the muscle strips developed steady-state tone. Baseline and optimal length (Lₒ) of the smooth muscle strips were determined as described previously (32). Only smooth muscle strips that developed steady tone and relaxed in response to electrical stimuli were used for further experiments. The following chemicals were used as antagonists: clonidine (Cl, 10 μg/ml) and 50% glycerol, 0.006% bromophenol blue, 2% β-mercaptoethanol and heated by placing samples in a boiling water bath for 4 min. Total protein samples (0–40 μg) were loaded to commercially available 7.5% polyacrylamide PAGE® Gold Gel (BioWhitaker Molecular Applications, Rockland, ME) and applied to 7.5% SDS-PAGE by the method of Laemmli (25). The separated proteins were electroophoretically transferred to nitrocellulose membrane (NCM) at 4°C. To block nonspecific antibody binding, the NCM were immersed overnight at 4°C in Super Block Tris-buffered saline (TBS) blocking buffer in TBS (Pierce Biotechnology, Rockford, IL). The NCM were incubated with 1:1,000 diluted primary eNOS antibody (Ab) (BD Transduction Laboratories) for 1 h at room temperature. After being washed with the blocking buffer, the membranes were incubated with horseradish peroxidase (HRP)-conjugated donkey anti-rabbit IgG secondary Ab (1:1,500) (Amersham Biosciences, Piscataway, NJ) for 1 h at room temperature. A separate NCM was incubated with primary Ab for platelet endothelial marker platelet endothelial cell adhesion molecule (PECAM-1), Santa Cruz Biotechnology, Santa Cruz, CA at a dilution of 1:1,000 and subsequently, after being washed, incubated at 1:1,500 dilution of HRP-conjugated donkey anti-rabbit IgG; Santa Cruz Biotechnology, Santa Cruz, CA. The bands were identified and quantified using a densitometer (CS-930, Bio-Rad, Hercules, CA).

Determination of NO. Measurement of total NOₓ (NO + NO₂ + NO₃) was used as a measure of release of NO by the tissues. Once released, NO is rapidly oxidized to NO₂ > NO₃. Therefore, it is necessary to measure all forms of NO (17) to determine accurately the amount of NO released by tissues. Total NOₓ was determined with a nitrate/nitrite colorimetric assay kit (Cayman Chemical, Ann Arbor, MI) specifically designed for this purpose.

Perfusates were collected from the muscle baths before treatment of the smooth muscle strips with any agents (basal condition) and after treatment with either disodium (R,R)-5-[(2-chlorophenyl)-2-hydroxyethyl]-amino-1,3-benzodioxole-2,2 dicarboxylate (CL 316243; 3 × 10⁻⁶ M) or isoproterenol (1 × 10⁻⁶ M). Such perfusates were collected before and after selective NOS inhibitors. After treatment with CL 316243 or isoproterenol, perfusates (100 μl) were collected at the onset of a fall in the basal IAS tone and transferred immediately to 1.5-ml vials at −20°C before analysis for content of NOₓ.

A commercially available (Cayman Chemical) nitrate/nitrite colorimetric assay kit was used to measure the total nitrate/nitrite concentration in a simple two-step process in which 1) nitrate in the sample is converted to nitrite by nitrate reductase and 2) nitrite is converted to a deep purple azo compound on the addition of Griess Reagent (17, 35). Eighty microliters of each sample were pipetted into a 96-well plate, and absorbance at 540 nm was determined using a spectrophotometer. Nitrite concentration in each sample was calculated by comparison with a standard curve generated immediately before analysis of the test samples. The standards and the test samples were analyzed in duplicate.

Drugs and chemicals. The following chemicals were used in the study: N⁵-nitro-L-arginine (l-NAME); l-N⁵-(1-iminoethyl)ornithine hydrochloride (l-NIO); eNOS inhibitor (9); 1-[(trifluoromethylphenyl)limidazole (TRIM); nNOS inhibitor (19); CL 316243; isoproterenol hydrochloride, atropine sulfate, guanethidine, pyrilamine, cimetidine, indomethacin,
sodium nitroprusside, sodium nitrate (Sigma, St. Louis, MO); TTX (Calbiochem, San Diego, CA); VIP-(10–28) (Peninsula Laboratories, Belmont, CA); N-(3-aminomethyl)benzyl acetamide 2HCl (1400D; INOS inhibitor; Alexis Biochemicals, San Diego, CA) (14); NO (Matheson Gas, Bridgeport, NJ); and EGTA tetrasodium (Fisher Scientific, Pittsburgh, PA).

When possible, all chemicals were dissolved and diluted in Krebs solution on the day of the experiment. Vials and pipette tips were siliconized, and the muscle baths were treated with 2.5% bovine serum albumin to reduce binding of peptides to the surface of the glass or plastic.

Drug responses. Pretreatment with different concentrations of NOS inhibitors (1 \times 10^{-6} to 1 \times 10^{-4} M) was used to examine their effects on decrease in the basal IAS tone by CL 316243, isoproterenol, or an NO donor [sodium nitroprusside (SNP)]. All agonists were given in a cumulative fashion. Once the concentration response curve (CRC) for an agent was determined, the smooth muscle strips were washed at least six times and resting tone was allowed to recover to the original level. The effects of the various agonists, administered at their EC_{max}, on NO release were determined in the presence or absence of selective inhibitors (1 \times 10^{-6} to 1 \times 10^{-4} M) of NOS.

Data analysis. The fall in the basal IAS tone is expressed as the percent maximal fall (100%) induced by a supramaximal concentration (5 mM) of EGTA (4). Statistical significance between different groups was determined by using paired or unpaired t-tests. ANOVA was performed to compare the entire frequency-response curve or CRC before and after administration of NOS inhibitors. The results are expressed as means ± SE of different experiments. A P value <0.05 was considered statistically significant.

RESULTS

Effect of \(\beta_3 \)-AR agonist CL 316243: influence of \(\beta_3 \)-AR selective antagonist L 748337 and nonselective antagonist propranolol on IAS smooth muscle relaxation by CL 316243. \(\beta_3 \)-AR selective agonist CL 316243 and nonselective agonist isoproterenol caused a concentration-dependent fall in the basal tone of the IAS (Figs. 1 and 2). Maximal relaxation with CL 316243 ranged from 74 to 85% with 3 \times 10^{-6} M. EC_{50} for the \(\beta_3 \)-AR agonist in these experiments was 1.5 \times 10^{-7} M. The agonist was found to be several times more potent in the IAS than in the LES, where EC_{50} was 6 \times 10^{-7} M and EC_{max} was 1 \times 10^{-4} M (unpublished data).

The IAS smooth muscle relaxation caused by CL 316243 but not that by isoproterenol was selectively antagonized by L 748337 in a concentration-dependent manner (*P < 0.05; n = 5–8; Fig. 1). The basal IAS tone in CL 316243 and isoproterenol experiments was 1.48 ± 0.18 and 1.52 ± 0.12 g, respectively. The smooth muscle tone was not significantly modified by the \(\beta_3 \)- antagonist. The corresponding values of basal IAS tone in these experiments in the presence of L 748337 was 1.35 ± 0.23 and 1.38 ± 0.18 g, respectively (P > 0.05; n = 5–8). Conversely, the IAS smooth muscle relaxation by isoproterenol but not by CL 316243 was significantly and concentration dependently antagonized by propranolol (*P < 0.05; n = 5–8; Fig. 2). The lower concentration of propranolol (that causes a significant rightward shift in the CRC of isoproterenol; Fig. 2B)

AJP-Gastrointest Liver Physiol • VOL 285 • AUGUST 2003 • www.ajpgi.org
Relaxation of the IAS smooth muscle induced by CL 316243 was not modified by neither neurohumoral inhibitors nor the neurotoxin TTX (1 × 10⁻⁶ M; P > 0.05; n = 5–8). Different neurohumoral inhibitors examined were atropine (muscarnic antagonist; 1 × 10⁻⁶ M), guanethidine (adrenergic blocking agent; 3 × 10⁻⁶ M), pyrilamine and cimetidine (H₁ and H₂ histamine receptor antagonists, respectively; 1 × 10⁻⁵ M), indomethacin (prostaglandin synthetase inhibitor; 1 × 10⁻⁵ M), and VIP-(10–28) (VIP antagonist; 1 × 10⁻⁶ M). These data suggest that CL 316243 directly induces relaxation of the IAS smooth muscle via selective activation of β₃-ARs. Further support for the notion that CL 316243 acts directly on smooth muscle cells (SMC) of the IAS is the observation that it induced relaxation of the isolated SMCs (data not shown).

Time course for the effects of CL 316243 and isoproterenol on the basal tone of the IAS smooth muscle. Relaxation of the IAS smooth muscle induced by CL 316243 was significantly longer in duration than that induced by isoproterenol (Fig. 3). The IAS relaxation by isoproterenol recovered to near original baseline within 20 min. By contrast, the total duration of IAS relaxation with CL 316243 was 240 ± 20 min. In these series of experiments with CL 316243, the basal tone recovered to ~70% of the original level at the end of 3 h.

Effects of L-NNA, a general inhibitor of NOS, on IAS smooth muscle relaxation by either CL 316243 or isoproterenol. IAS smooth muscle was treated with L-NNA, a general inhibitor of NOS, followed by either CL 316243 or isoproterenol. As shown, the smooth muscle relaxation by CL 316243 is of significantly longer duration compared with ISO. The IAS relaxation by ISO recovers to near original baseline within 20 min, whereas with CL 316243 it takes >3 h for plateau to occur. At the end of 3 h, the basal IAS tone following CL 316243 recovers to ~70% of original tone.

had no significant effect on CL 316243-induced fall in the basal IAS tone (P > 0.05; n = 5–8; Fig. 2A). Only a higher concentration of propranolol caused a moderate antagonism of CL 316243 effect (⁎P < 0.05; n = 5–8).

Fig. 2. Influence of propranolol (1 × 10⁻⁷ and 3 × 10⁻⁷ M) on IAS smooth muscle relaxation induced by CL 316243 (A) and ISO (B). Propranolol causes a concentration-dependent and significant antagonism of ISO-induced relaxation of the IAS (⁎P < 0.05; n = 5–8). Propranolol (1 × 10⁻⁷ M) has no significant effect on CL 316243 (P > 0.05; n = 5–8) but shows a moderate antagonism in the presence of 3 × 10⁻⁷ M.

Fig. 3. Time course for IAS smooth muscle relaxation induced by the β₂-AR agonist CL 316243 (3 × 10⁻⁶ M) or the nonspecific agonist ISO (1 × 10⁻⁶ M), administered at their respective Eₘₐₓ concentrations. As shown, the smooth muscle relaxation by CL 316243 is of significantly longer duration compared with ISO. The IAS relaxation by ISO recovers to near original baseline within 20 min, whereas with CL 316243 it takes >3 h for plateau to occur. At the end of 3 h, the basal IAS tone following CL 316243 recovers to ~70% of original tone.
316243 or isoproterenol to determine whether NOS had a role in agonist-induced relaxation of this muscle. L-NNA caused significant attenuation of the CL 316243-induced fall in basal IAS tone (*P < 0.05; n = 5–8) (Fig. 4A) but had no significant effect on the isoproterenol-induced fall in IAS tone (Fig. 4B). In these experiments, CL 316243 (3 × 10⁻⁶ M) caused a 75.03 ± 1.7% fall in the basal IAS tone that was attenuated to 35.6 ± 2% following the pretreatment with L-NNA.

Effects of different NOS inhibitors on IAS smooth muscle relaxation induced by either CL 316243 or isoproterenol. The decrease in IAS smooth muscle tone induced by CL 316243 was not significantly affected by a selective inhibitor of either nNOS (TRIM) or of iNOS (1400DW; 1 × 10⁻⁶, 1 × 10⁻⁵, and 1 × 10⁻⁴ M; Figs. 5, A and B; P > 0.05; n = 5–8).

In contrast, L-NIO (1 × 10⁻⁶ and 1 × 10⁻⁵ M) significantly attenuated the CL 316243-induced fall in IAS tone in a concentration-dependent fashion (*P < 0.05; n = 5–8; Fig. 6). L-NIO caused no significant effect on IAS smooth muscle relaxation by SNP (P > 0.05; n = 5–8; Fig. 7). The IAS smooth muscle relaxation caused by EFS was, however, partially but significantly attenuated by L-NIO (*P < 0.05; n = 5–8).

In these series of experiments, the overall CRC for the fall in the basal IAS tone by different concentrations of isoproterenol was not affected significantly by any of the inhibitors of NOS (P > 0.05; n = 5–8; Fig. 8).

Presence of eNOS protein in the IAS smooth muscle. Western blot studies revealed the presence of eNOS-specific protein in the circular smooth muscle of the IAS (Fig. 9). The expression of eNOS in the IAS smooth muscle was found to be significant and specific, because PECAM-1 (an endothelial cell marker) was poorly expressed under the identical experimental conditions.

Effect of CL 316243 on NO release in the IAS smooth muscle before and after different inhibitors: comparison with isoproterenol and EFS. To ascertain the direct release of NO and the nature of NOS involved, NO release was determined by measuring the amount of total NOx as explained in MATERIALS AND METHODS. The standard curves for NOx generated by the addition of sodium nitrate (from 1 to 100 nmol) were linear with a coefficient of correlation (r) of 0.993. CL 316243 (3 × 10⁻⁶ M) caused a significant increase in the basal levels of NO in the IAS smooth muscle. The eNOS inhibitor L-NIO selectively and significantly blocked this increase in NO release (Fig. 10). The basal release from the IAS smooth muscle tissues was 19 ± 4 nmol, and CL 316243 increased these levels to 38 ± 9 nmol. L-NIO (1 × 10⁻⁵ M) attenuated CL 316243-induced increased NO release to 20 ± 3 nmol (*P < 0.05; n = 4; Fig. 10). Conversely, neuronal and inducible NOS inhibitors TRIM and 1400DW, respectively, had no significant effect on CL 316243-induced increase in the levels of NO release (Fig. 10; P < 0.05; n = 4).

We also monitored the release of NO following isoproterenol (1 × 10⁻⁶ M) and EFS (10–15 V, 0.5-ms pulse duration, 4-s train, and 5 Hz). EFS caused a significant increase in the NO release; this was partly attenuated by TRIM but not by 1400DW and L-NIO. Isoproterenol did not produce a significant increase in NO release in the IAS smooth muscle.
DISCUSSION

This is the first report on the effects and mechanism of action of β3-AR agonist in the spontaneously tonic smooth muscle of the IAS. The studies suggest that β3-AR agonist causes potent and prolonged relaxation of the IAS via β3-AR distinct from the conventional β-ARs known to produce relaxation of the gastrointestinal smooth muscles. In addition, the relaxation of the IAS smooth muscle following β3-AR stimulation uses a novel mechanism involving activation of NOS.

Fig. 5. Influence of the neuronal NOS (nNOS) inhibitor 1-[2-(trifluoromethyl)phenyl]imidazole (TRIM; 1 × 10^{-6}, 1 × 10^{-5}, and 1 × 10^{-4} M) (A) and inducible NOS (iNOS) inhibitor N-(3-aminomethyl)benzyl acetamide 2HCl (1400DW; 1 × 10^{-6}, 1 × 10^{-5}, and 1 × 10^{-4} M) (B) on IAS smooth muscle relaxation induced by CL 316243. Note that the %maximal fall in IAS tone induced by CL 316243 is not significantly modified by inhibitors of n- or iNOS (P > 0.05; n = 5–8).

Fig. 6. Influence of putative eNOS inhibitor L-N^5-[1-iminoethyl]-ornithine dihydrochloride (L-NIO; 1 × 10^{-6} and 1 × 10^{-5} M) on IAS smooth muscle relaxation induced by CL 316243. L-NIO produces a concentration-dependent and significant attenuation of IAS smooth muscle relaxation induced by CL 316243 (**P < 0.05; n = 5–8).

β3-AR agonist causes potent and prolonged relaxation of the IAS via β3-AR distinct from the conventional β-ARs known to produce relaxation of the gastrointestinal smooth muscles. In addition, the relaxation of the IAS smooth muscle following β3-AR stimulation uses a novel mechanism involving activation of NOS.

Fig. 7. Comparison of the influence of L-NIO on IAS smooth muscle relaxation induced by different agonists and nonadrenergic, noncholinergic nerve stimulation by electrical field stimulation (EFS). As shown, L-NIO produces selective and significant attenuation of IAS smooth muscle relaxation induced by CL 316243 and EFS (**P < 0.01; *P < 0.05; n = 5–8) but not that induced by ISO or sodium nitroprusside (SNP).
Data suggest that the IAS relaxation by CL 316243 is caused by the activation of the β_3-AR in the smooth muscle. Relaxation of the IAS smooth muscle induced by CL 316243 was not antagonized by propranolol in a concentration-dependent manner known to primarily block the effects of β_1- and β_2-AR activation. This finding supports the suggestion that CL 316243 is an agonist for β_3-AR and induces relaxation of the IAS smooth muscle via those specific receptors. This suggestion is supported further by our finding that β_3-AR antagonist L 748337 (6) inhibits CL 316243-induced relaxation of the IAS smooth muscle in a concentration-dependent manner. Conversely, the smooth muscle relaxation by isoproterenol is antagonized by propranolol but not by L 748337. Different neurohumoral inhibitors and neurotoxin TTX do not modify the smooth muscle relaxation caused by CL 316243. The direct action of β_3-agonist at the smooth muscle is further demonstrated by its inhibitory action at the SMC.

We further investigated the intracellular mechanism of IAS smooth muscle relaxation by β_3-AR activation.
In our preliminary studies, the smooth muscle relaxation by CL 316243 was inhibited by the general NOS inhibitor l-NNA, suggesting the involvement of NOS. To investigate the nature of NOS involved, we examined the influence of selective NOS inhibitors. Detailed experimentation with selective inhibitors of different NOS isozymes revealed that only l-NIO causes a substantial and concentration-dependent attenuation of the smooth muscle relaxation by CL 316243. Inhibitors of inducible and neuronal NOS have no significant effect. Our Western blot studies using specific eNOS antibody further show the presence of eNOS in the circular smooth muscle of the IAS. The conclusion is supported by recent findings in a different system, where it was shown that activation of \(\beta_3 \)-AR causes vascular smooth muscle relaxation by activation of eNOS (5, 40).

It is quite clear that the enzymatic activity of eNOS in IAS smooth muscle is increased on stimulation of the \(\beta_3 \)-adrenoreceptor and is associated with relaxation of that smooth muscle. That is, inhibitor of eNOS attenuates the production of NO and the relaxation of the IAS smooth muscle in response to CL 316243. Furthermore, increased production of NO is unique to the \(\beta_3 \)-AR, because treatment of IAS smooth muscle with isoproterenol (primarily \(\beta_1/\beta_2 \)-AR) does not stimulate production of NO. eNOS responsible for \(\beta_3 \)-AR-mediated relaxation of IAS smooth muscle may be present in the SMC. The role of eNOS from endothelial cells in our smooth muscle preparations is expected to be minimal because of the limited presence of endothelial cells. In addition, the inhibitory effect of CL 316243 is preserved in the presence of different neurohumoral inhibitors and is demonstrated directly in the isolated SMC. Therefore, we speculate that the \(\beta_3 \)-AR are present in the SMC and that relaxation of the IAS smooth muscle is partly mediated by direct interaction of agonists with those receptors. Western blot studies further delineate the presence of eNOS in the IAS smooth muscle. PECAM-1, on the other hand, was not found in significant amounts. Other investigators (13) have also found eNOS to be present in SMCs of the GI tract and to be involved in smooth muscle relaxation by a number of neurohumoral agonists. However, the role for NOS pathway in \(\beta_3 \)-AR agonist-induced relaxation of the GI smooth muscle has not been examined before.

Recent studies by König et al. (24) in the GI tract are in general agreement with the concept that eNOS is not restricted to endothelial cells and that it also occurs in other cells such as interstitial cells of Cajal (ICC) (42) and SMC (39). The proposed role of SMC eNOS in the present studies is different from previous studies in the vascular smooth muscle where \(\beta_3 \)-agonist-induced relaxation is mediated primarily by eNOS in the endothelium (5, 40). Interestingly, in heart, eNOS present in cardiac myocytes has been shown to be involved in the negative inotropic effect of \(\beta_3 \)-AR activation (16). Additional studies are needed to ascertain the definitive and relative roles of eNOS in the SMC vs. the endothelial cells and ICC in the IAS smooth muscle relaxation by \(\beta_3 \)-AR activation.

\(\beta_3 \)-agonist-induced prolonged relaxation of the IAS smooth muscle may have important therapeutic implications in conditions such as anal fissures, Hirschprung’s disease, irritable bowel syndrome, severe constipation due to spastic gut, and achalasia. Presently, such conditions are being treated with topical glyceryl trinitrate (GTN), cardizem ointment, botulinum toxin injection, and surgical intervention (21, 22, 29, 37, 38). One of the deleterious effects of botulinum toxin injection includes fecal incontinence, whereas topical nitrates cause headaches in 20–100% of cases. Surgical intervention may lead to long-term complications (notably incontinence) (30). It is of interest that both GTN and \(\beta_3 \)-agonist act via the release of NO, but \(\beta_3 \)-agonist has fewer cardiovascular side effects (10).

\(\beta_3 \)-ARs, especially \(\beta_3 \)-AR activation-mediated smooth muscle, involve a number of intracellular mechanisms. In the present investigation, we did not examine the relative role of other intracellular mechanisms such as cAMP/PKA (34, 41), decrease in free intracellular Ca\(^{2+} \) levels (18, 20, 23), and lack of PKA phosphorylation sites in \(\beta_3 \) vs. \(\beta_1 \) and \(\beta_2 \)-receptors (7, 26). We speculate that a combination of the NOS activation and other intracellular events may be responsible for the prolonged IAS smooth muscle relaxation by \(\beta_3 \)-agonists.

In summary, \(\beta_3 \)-AR agonists possess unique characteristics such as prolonged IAS smooth muscle relaxation and a novel mechanism of action via the activation of NOS. This combined with other intracellular pathways may be responsible for the prolonged IAS smooth muscle relaxation. These attributes and minimal cardiovascular side effects suggest that selective \(\beta_3 \)-agonists may have clinical relevance for treating anorectal motility disorders.

We are grateful to S. Rathi for technical expertise in Western blot studies, to Dr. R. N. Puri for valuable suggestions, and to Drs. J. J. Gartland and K. Chepenik for editing the manuscript.

DISCLOSURES

This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grant DK-35385 and by an institutional grant from Thomas Jefferson University.

REFERENCES

