Stomach-brain communication by vagal afferents in response to luminal acid backdiffusion, gastrin, and gastric acid secretion

Marion Danzer,1 Milana Jocic,1 Claudia Samberger,1 Evelyn Painsipp,1 Elisabeth Bock,3 Maria-Anna Pabst,3 Karl Crailsheim,2 Rudolf Schicho,1 Irmgard T. Lippe,1 and Peter Holzer1

Departments of 1Experimental and Clinical Pharmacology, 2Zoology, and 3Histology and Embryology, University of Graz, A-8010 Graz, Austria

Submitted 22 July 2003; accepted in final form 27 October 2003

VAGAL AFFERENT NEURONS PLAY an important role in gut-brain communication. They not only respond to a variety of physiological stimuli relevant to food intake and regulation of digestive activity, but are also activated by immunological and noxious stimuli (3, 15). For instance, painful distension of the rat stomach (38, 42) or exposure of the rat gastric mucosa to an injurious concentration of HCl (34) causes excitation of neurons in the nucleus of the solitary tract (NTS) as visualized by expression of c-Fos. A major participation of vagal afferents in the response to intragastric HCl exposure is deduced from the finding that the c-Fos induction in the NTS is largely prevented by vagal afferents contribute to the emotional-affective and autonomic aspects of abdominal nociception (3, 15, 38).

The first aim of this study was to characterize the range of intragastric HCl concentrations that are signaled to the NTS. To this end, the relationship among increasing concentrations of intraluminal HCl, gastric mucosal damage, and c-fos expression in the NTS at the mRNA and protein level was measured. Particular attention was paid to the question of whether physiological or supraphysiological concentrations of intragastric HCl are required to activate neurons in the NTS. The responses to intragastric HCl were compared with those of another noxious chemical, ammonia, administered in the form of NH4OH. This product of Helicobacter pylori urease is known to cause gastric inflammation and injury (39, 41) and to modify the pH-dependent regulation of gastrin and gastric acid secretion (17, 30).

Because intragastric HCl challenge alters gastric and pyloric motor activity (20) and entry of HCl into the duodenum inhibits gastric emptying and attenuates gastric motility (14, 25) the second aim was to record intragastric pressure and volume recovery following intragastric challenge with HCl or NH4OH to find out whether different gastropyloric motor alterations could modify the afferent input to the NTS. Thirdly, possible gender differences in the HCl- and NH4OH-evoked expression of c-Fos in the NTS were investigated, given that there are gender-related differences in the prevalence of functional bowel disorders and in the perceptual responses to gastrointestinal stimuli (9).

The fourth aim addressed the question of whether endogenous gastric acid secretion itself elicits vagal afferent input to the NTS and modulates the c-Fos expression evoked by intraluminal HCl or NH4OH challenge. This possibility was thought of because stimulation of gastric acid secretion by pentagastrin (2) or administration of exogenous acid (35) can give rise to pain in humans. In our study, it was tested whether pharmacological inhibition or stimulation of gastric acid secretion would influence the expression of c-Fos in the NTS evoked by intragastric HCl or NH4OH challenge. Furthermore, we analyzed whether the effect of systemic pentagastrin administration to evoke per se c-Fos expression in the NTS and...
area postrema is due to secreted acid as an afferent stimulus and/or to direct activation of CCK1 (CCKA) and CCK2 (CCKB) receptors on vagal afferents (6, 36) or in the brain stem (7, 37).

MATERIALS AND METHODS

Experiments with nonanesthetized animals. This study was approved by an ethics committee at the Federal Ministry of Education, Science, and Culture of the Republic of Austria. Unless otherwise stated, female age-matched Sprague-Dawley rats (Institut für Labor-tierkunde und -genetik, Himberg, Austria), weighing 150–180 g, were used. One set of experiments was performed with male Sprague-Dawley rats of 220–250 g body wt. All experimental treatments were carried out between 9 and 10 AM after the rats had been fasted for 20 h with free access to water. HCI, NH4OH, or saline (0.15 M NaCl) was administered intragastrically at a volume of 10 ml/kg through a soft infant feeding tube (outer diameter 2.2 mm; Portex, Hythe, UK).

After this intragastric treatment or the intraperitoneal administration of pentagastrin, the animals were no longer allowed to drink until tissue collection 45 min (for in situ hybridization) or 2 h (for immunohistochemistry) later. To this end, the rats were euthanized with an overdose of pentobarbital sodium (200 mg/kg ip). For immunohistochemistry (IHC), they were transcardially perfused with 0.1 M PBS (pH 7.4; 150 ml) followed by 4% buffered paraformaldehyde (250 ml). The brain and spinal cord were removed and postfixed overnight in 4% buffered paraformaldehyde at 4°C. Then the tissues were cryoprotected for 48 h in 20% sucrose at 4°C, frozen on dry ice, and stored at −70°C until use.

Six studies were carried out. In study 1, the relationship between the intragastric concentration of HCl or NH4OH and the expression of c-Fos mRNA/c-Fos protein in the brain stem was examined. Animals were given intragastric saline, HCl (0.15, 0.25, 0.35, 0.5 M), or NH4OH (0.1, 0.2, 0.3 M) 2 h before tissue collection for IHC or were treated intragastrically with saline, HCl (0.35, 0.5 M), or NH4OH (0.2, 0.3 M) 45 min before tissue collection for in situ hybridization. In all further experiments, the expression of c-Fos was visualized by IHC 2 h after intragastric administration of saline, HCl (0.35 M), or NH4OH (0.3 M) and after intraperitoneal injection of pentagastrin. Study 2 examined whether pharmacological blockade of gastric acid secretion modifies the c-Fos response of the NTS to intragastric HCl or NH4OH stimulation. Cimetidine (40 μmol/kg) or its vehicle 60 min before the intraperitoneal administration of pentagastrin (45 μmol/kg ip) (33) or the CCK2 receptor antagonist itriglumide (10 μmol/kg ip) (27) 30 min before the intraperitoneal administration of pentagastrin was given ip 30 min before the intraperitoneal administration of pentagastrin. Rats were given intraperitoneal saline, HCl (0.35, 0.5 M), or itriglumide (10 μmol/kg), or dexloxiglumide plus itriglumide 23 min before the intraperitoneal administration of pentagastrin.

Evaluation of gross and histological injury of the gastric mucosa. The extent of injury was evaluated by an observer who was unaware of the experimental treatment (34). Gross gastric injury was assessed by computerized planimetry, and the mucosal area covered by visible hemorrhagic damage was expressed as a percentage of the total area of the glandular mucosa (34). For histological examination, 4-μm sections were cut from fixed and embedded stomachs and stained with a mixture of methylene blue-azure II and basic fuchsin (34). The sections were taken randomly from the gastric corpus and included areas of hemorrhagic damage, if present. The histological injury in each 10-μm segment of the sections was graded as follows: 0, no damage; 1, damage up to 10% of the mucosal depth; 2, damage involving 11–25% of the mucosal depth; and 3, damage involving >25% of the mucosal depth. The section length occupied by the respective injury grades was expressed as a percentage of the total section length (34).

In situ hybridization autoradiography. The brain stems were quickly frozen on dry ice. Coronal sections (10 μm) were cut serially from the brain stem over the whole length of the area postrema and from the caudal thoracic (T8–T12) segments of the spinal cord with a cryostat (31, 34). Every sixth section was processed for in situ hybridization (ISH) with an oligodeoxyribonucleotide probe labeled at the 3′-end with [35S]deoxyadenosine 5′-triphosphate as described previously (28). The sections were dipped in Ilford K5 photographic emulsion, and after 18–25 days of exposure in sealed boxes at 4°C, the autoradiograms were developed and the sections were counterstained with hematoxylin and placed on coverslips (28).

IHC. Serial sections of 35-μm thickness were cut from the brain stem over the whole length of the area postrema and from the caudal thoracic (T8–T12) segments of the spinal cord with a cryostat. Every second section was processed and processed as free float. Sections were washed three times in PBS and then incubated in 0.3% H2O2 for 30 min. After three washes (each for 10 min), tissues were first incubated for 1.5 h with a blocking serum (0.3% Triton X-100, 1% bovine serum albumin, 5% goat serum in PBS) at room temperature and then with the primary antibody (rabbit polyclonal anti-c-Fos; 1: 20,000) for 48 h at 4°C. Sections were washed again three times in PBS and then incubated for 1.5 h in a solution containing the biotinylated secondary antibody (goat anti-rabbit IgG; Vectastain Elite kit). Vector Laboratories, Burlingame, CA). After three washes in PBS, they were incubated for 1 h in avidin-biotin complex (Vectastain Elite kit). Tissues were rinsed afterward and developed with 3,3′-diaminobenzidine (DAB) substrate (Vector Elite kit) intensified with nickel sulfate for ~2 min. Tissues were subsequently mounted on gelatin-covered slides, air-dried overnight, and dehydrated through an alcohol series. Slides were placed on coverslips with Entellan. Preabsorption controls were performed by using a c-Fos-blocking peptide.

Measurement of intragastric pressure and volume recovery in anesthetized rats. Rats were anesthetized with phenobarbital sodium (230 mg/kg ip). After a midline laparotomy, an intragastric catheter (outer diameter, 2.2 mm) was inserted in the stomach via the esophagus, and the stomach was flushed (20). With its tip being positioned in the corpus region, the catheter was used to record the intragastric pressure (IGP) via a pressure transducer as well as to inject fluid into and drain it from the stomach (20). After an equilibration period of 30 min, a 2-ml fluid bolus was slowly injected into the stomach over a period of 5 s and left in the stomach for a period of 30 min, after which the stomach was drained, and the weight of the recovered fluid was determined. The recovery of fluid from the stomach (an indirect measure of gastric emptying) was expressed as a percentage of the weight of the fluid administered into the stomach (20). Each rat was subjected to four injections; every trials at intervals of 15 min during which the stomach was left empty. Two priming trials with saline were followed by a test trial with saline and a test trial with HCl (0.35 M) or NH4OH (0.2 M). IGP was averaged for the periods of 2–3
min and 29–30 min postinjection. As described before (20), the IGP averaged during the period of 2- to 3-min postinjection was taken as 100% and the IGP taken during the 29- to 30-min postinjection period was expressed as a percentage of that reference value.

Substances and solutions. Cimetidine (Sigma, Vienna, Austria) was dissolved in 0.1 M HCl, then neutralized with 0.1 M NaOH to pH 7.4 and adjusted with sterile saline (Mayrhofer Pharmazeutika, Linz, Austria) to a final concentration of 40 mM cimetidine (21). Pentagastatin (Novabiochem, Laufelfingen, Switzerland) was dissolved in sterile saline to a final concentration of 150 μg/ml (195 μM). Omeprazole was supplied by Astra Zeneca (Molndal, Sweden), dissolved in 30% polyethylene glycol 400 (Merck-Schuchardt, Hohenbrunn, Germany), and diluted in a weak NaHCO3 buffer (0.56 mg/ml) to a concentration of 20 mM. The rabbit polyclonal anti-c-Fos antibody and its blocking peptide were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Dexloxiglumide (CR 2017) and itriglumide (CR 2945; gifts of Rotta Research Laboratories, Monza, Italy) were suspended in dis-tilled water and subsequently dissolved by addition of 0.1 M NaOH. The pH of the solutions (45 mM dexloxiglumide and 10 mM itriglumide) was adjusted to 8 by the use of 0.1 M HCl.

Data analysis and statistics. Immunohistochemically processed brain stem and spinal cord sections stained with DAB were examined in a coded manner with a light microscope (Axiophot, Zeiss, Oberkochen, Germany). Eight sections (35 μm) per region and animal were analyzed, and all c-Fos protein-positive cells (nuclei) on one side of the brain stem and dorsal horn of the spinal cord were counted. In situ autoradiograms were also examined in a coded manner with the microscope coupled to a computerized image analysis system (Image- st, St. Catharines, ON, Canada). Cells were considered c-Fos mRNA positive when their grain density was at least 10 times higher than the background (28, 34). Five sections of the brain stem and spinal cord were examined in each animal, and the unilateral counts of c-Fos mRNA-positive cells were determined. To avoid the same cells being counted twice, only every second (IHC) or sixth section (ISH) was examined in each animal, and the unilateral counts of c-Fos mRNA-positive cells were determined. To avoid the same cells being counted twice, only every second (IHC) or sixth section (ISH) was examined. All data are presented as means ± SE, n referring to the number of rats in the respective group. Statistical evaluation of the results was performed with Student’s t-test, one-way ANOVA, or ANOVA for repeated measures followed by Dunnett’s test, as appropriate. Probability values of P < 0.05 were regarded as significant.

RESULTS

Relationship among intragastric HCl concentration, gastric damage, and c-Fos mRNA/c-Fos protein expression in the brain stem and spinal cord. The gastric mucosa of rats was exposed to different concentrations of HCl (0.15, 0.25, 0.35, 0.5 M), and the nuclear c-Fos protein in the NTS was measured immunohistochemically 2 h later. Relative to saline, intragastric HCl increased the total number of c-Fos protein-expressing cells (nuclei) in a concentration-dependent manner (Fig. 1A). The lowest concentration of HCl tested (0.15 M) augmented the number of c-Fos-positive cells by a factor of 1.85 (P < 0.05), whereas the highest concentration of HCl (0.5 M) enhanced it by a factor of 12.2 (P < 0.01). The number of c-Fos mRNA-positive cells visualized 45 min after intragastric treatment by ISH was roughly equivalent to that of c-Fos protein-positive cells, although after intragastric challenge with 0.35 M HCl, IHC seemed to reveal more activated cells than ISH (Fig. 1A). Gastric exposure to 0.35 and 0.5 M HCl also caused some neurons in the area postrema to express c-Fos protein (data not shown) but failed to induce any c-Fos protein in the dorsal horn of the posterior thoracic spinal cord. Thus the number of c-Fos protein-positive cells in saline-treated rats was 3.5 ± 0.2 (n = 4) compared with 4.6 ± 0.6 (n = 4) cells in animals treated with 0.35 M HCl.

As noted previously (34), only 0.5 M HCl led to formation of hemorrhagic lesions, which covered 1.2 ± 0.2% (n = 6) of the glandular area of the stomach, whereas 0.15–0.35 M HCl failed to induce any macroscopically visible damage (Fig. 1A). Histology revealed that, after exposure to 0.5 M HCl, ~25% of the section length was afflicted with microscopic damage that involved only the superficial 10% of the mucosal depth (Table 1). The characteristics of the acid-induced injury included damaged parietal cells, vacuoles in the superficial epithelial cells, and dilated blood vessels underneath the surface epitheli-um (34).

Relationship among intragastric NH4OH concentration, gastric damage, and c-Fos mRNA/c-Fos protein expression in the brain stem and spinal cord. Animals were treated intragastrically with NH4OH (0.1, 0.2, 0.3 M) for 45 min and 2 h

Fig. 1. Relationship between the intragastric concentration of HCl (A) and NH4OH (B), the number of c-Fos protein-positive cells (nuclei) and the number of c-Fos mRNA-positive cells in the nucleus of the solitary tract (NTS), and the extent of hemorrhagic damage in the stomach (expressed as a percentage of the total area of the glandular mucosa). The measurements were taken 45 min after intragastric administration of HCl, NH4OH, or saline (0.0) for in situ hybridization (ISH) autoradiography or 2 h posttreatment for immunohistochemistry (IHC) and gastric damage assessment. The data obtained with ISH were calculated relative to a section thickness of 35 μm so as to be comparable with the data obtained with IHC. Values are means ± SE; n = 5–11. *P < 0.05; **P < 0.01 vs. saline.
Compared with the HCl-injured mucosa, the NH₄OH-injured involved the superficial epithelial cells. Unlike the HCl-exposed mucosa, the NH₄OH-injured mucosa did not exhibit hemorrhagic damage in the stomach was seen only in response to 0.35 M HCl, or 0.3 M NH₄ OH (Table 2).

Relative to a section thickness of 35 μm, 4.6 ± 0.9 (n = 4) and 6.1 ± 0.3 (n = 4) cells in the dorsal horn of the posterior thoracic spinal cord were positive for c-Fos mRNA and c-Fos protein after intragastric treatment with saline compared with 4.7 ± 0.6 (n = 4) and 5.1 ± 0.3 (n = 4) cells after intragastric treatment with 0.3 M NH₄ OH, respectively. Appreciable hemorrhagic damage in the stomach was seen only in response to the highest concentration of NH₄ OH (0.3 M) tested (Fig. 1B). Histological examination of the injury revealed that ~40% of the section length was covered by lesions, which mostly involved the superficial 10% of the mucosal depth but occasionally also affected deeper levels of the mucosa (Table 1). Compared with the HCl-injured mucosa, the NH₄OH-Injured mucosa was characterized by a larger number of widely dilated blood vessels underneath the surface epithelium and fewer vacuoles in the superficial epithelial cells. Unlike the HCl-exposed mucosa, the NH₄OH-injured mucosa did not exhibit damaged parietal cells.

Table 1. Gross and histological injury in the gastric mucosa after intragastric treatment with NH₄OH and HCl

<table>
<thead>
<tr>
<th>Type of Injury</th>
<th>Intragastric NH₄OH 0.3 M</th>
<th>Intragastric HCl 0.5 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross injury</td>
<td>3.2±0.4%</td>
<td>1.2±0.3%</td>
</tr>
<tr>
<td>Histological injury grade 0</td>
<td>59.0±6.7%</td>
<td>75.0±4.8%</td>
</tr>
<tr>
<td>Histological injury grade 1</td>
<td>32.2±4.2%</td>
<td>22.8±4.6%</td>
</tr>
<tr>
<td>Histological injury grade 2</td>
<td>3.5±1.8%</td>
<td>1.8±0.2%</td>
</tr>
<tr>
<td>Histological injury grade 3</td>
<td>5.3±2.5%</td>
<td>0.3±0.2%</td>
</tr>
</tbody>
</table>

Values are means ± SE. Stomachs were examined 2 h after the intragastric administration of NH₄ OH (n=9) and HCl (n=6). The mucosal area covered by gross injury was expressed as a percentage of the total area of the glandular mucosa. Histological injury was divided into 4 categories as defined in MATERIALS AND METHODS. Each histological injury grade was expressed as a percentage of the section length covered by the respective grade.

Effects of post gastric acid secretion attenuation on c-Fos expression in the NTS. Whereas inhibition of gastric acid secretion attenuated the medullary c-Fos response to exogenous HCl challenge, stimulation of gastric acid secretion with pentagastrin (195 μmol/kg ip) enhanced the induction of c-Fos in the NTS by intragastric HCl (0.35 M) to a significant extent (Fig. 4). In addition, the number of c-Fos protein-positive cells in the NTS of rats treated intragastrically with saline was also augmented by pentagastrin (Fig. 4). The action of pentagastrin to enhance the HCl-induced expression of c-Fos in the NTS was significantly reduced in rats pretreated with omeprazole (20 μmol/kg), although in these rats, pentagastrin was still able to enhance the medullary c-Fos response to HCl when compared with omeprazole-pretreated rats exposed to intragastric HCl (Fig. 4).

Effects of dexloxi luglumide and itriglumide on intragastric HCl-induced expression of c-Fos in the NTS. Intrapерitoneal pretreatment of rats with the CCK₁ receptor antagonist dexloxi luglumide (45 μmol/kg ip) and the CCK₂ receptor antagonist itriglumide (10 μmol/kg ip) 30 min before intragastric challenge with saline or 0.35 M HCl did not significantly change the expression of c-Fos in the NTS relative to the c-Fos response seen in vehicle-pretreated rats (Table 3). Analysis of the effect of pentagastrin to induce c-Fos in the brain stem. Omeprazole (20 μmol/kg ip) failed to significantly reduce the ability of pentagastrin (195 μmol/kg ip) to induce c-Fos in the NTS (Fig. 4). The omeprazole-resistant c-Fos response of the NTS to pentagastrin was suppressed by dexloxi luglumide (45 μmol/kg ip) to a level that was no longer different from the c-Fos expression seen after intraperitoneal injection of saline (Fig. 5A). Itriglumide (10 μmol/kg ip) reduced the effect of pentagastrin in the NTS to a smaller extent than dexloxi luglumide, because the pentagastrin-evoked c-Fos expression in the NTS of itriglumide-pretreated rats was still significantly higher than the saline-evoked c-Fos induction (Fig. 5A). The combination of dexloxi luglumide plus itriglumide was as effective as dexloxi luglumide alone in reducing the c-Fos response of the NTS to pentagastrin (Fig. 5A).

Table 2. Number of c-Fos protein-positive cells (nuclei) in the NTS after intragastric administration of saline, HCl, and NH₄OH to male and female rats

<table>
<thead>
<tr>
<th>Intragastric Treatment</th>
<th>Male Rats</th>
<th>Female Rats</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline (0.15 M NaCl)</td>
<td>6.5±0.83</td>
<td>7.4±1.0</td>
<td>0.490</td>
</tr>
<tr>
<td>HCl (0.35 M)</td>
<td>77.0±3.5</td>
<td>70.0±2.6</td>
<td>0.126</td>
</tr>
<tr>
<td>NH₄OH (0.3 M)</td>
<td>69.1±5.1</td>
<td>75.1±5.3</td>
<td>0.427</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 11. The expression of c-Fos in the nucleus of the solitary tract (NTS) was measured 2 h after the intragastric treatment. There were no significant differences between male and female rats.
Pentagastrin increased the expression of c-Fos not only in the NTS but also in the area postrema, in which it was studied only in omeprazole-pretreated rats (Fig. 5B). The effect of dexloxiglumide and itriglumide on the c-Fos response to pentagastrin in the area postrema of omeprazole-pretreated rats was distinct from that in the NTS, because in the area postrema, itriglumide was more effective than dexloxiglumide in blocking the c-Fos induction due to pentagastrin (Fig. 5B). Whereas itriglumide and the combination of itriglumide plus dexloxiglumide suppressed the pentagastrin-evoked c-Fos response in the area postrema to a level that was indifferent from the c-Fos response evoked by saline, dexloxiglumide alone caused only a partial inhibition of the pentagastrin-evoked c-Fos expression in this brain stem region (Fig. 5B).

DISCUSSION

The current study shows that exposure of the rat stomach to HCl or NH₄OH and intraperitoneal administration of pentagastrin stimulate neurons in the brain stem as visualized by expression of the inducible gene c-Fos at the mRNA and protein level, a method that has been established as a standard tool in functional neuroanatomy to delineate the stimulus-evoked activation of neurons (23). Because c-Fos transcription begins within a few minutes after neuronal excitation (23) and in the rat NTS and area postrema seems to be maximal 45 min after gastric acid challenge (34), the induction of c-Fos mRNA was determined by ISH 45 min poststimulus. The appearance of c-Fos protein was measured by IHC 2 h posttreatment, given
that the translation of c-Fos mRNA into c-Fos protein reaches its maximum between 1 and 3 h poststimulus (23, 38, 42). We limited our analysis to the brain stem because exposure of the rat stomach to HCl or NH₄OH failed to induce any c-Fos mRNA and c-Fos protein in the dorsal horn of the posterior thoracic spinal cord, which receives gastric input via spinal afferent neurons (16, 29). These data reinforce the concept that intragastric challenge with HCl or NH₄OH is signaled to the brain stem via vagal afferents. In contrast, distension of the rat stomach induces c-Fos both in the brain stem and spinal cord (38, 42), the expression of c-Fos in the NTS being considerably more abundant than in the spinal cord (38).

The induction of c-Fos mRNA and c-Fos protein in the NTS, the central projection area of vagal afferents (1), was related to the intragastrically administered HCl concentration. In addition, it was found that the expression of the c-Fos protein increased at lower concentrations of intragastric HCl than the induction of c-Fos mRNA, which demonstrates that the sensitivity of c-Fos IHC is superior to that of c-Fos mRNA ISH. A comparative analysis of the medullary c-Fos induction and gastric damage indicates that the afferent signaling of gastric acid challenge is not directly related to the formation of overt mucosal injury, because c-Fos expression in the NTS was measured 2 h postintra gastric challenge. There were no significant differences.

Table 3. Effect of dexloxiglumide and itriglumide, relative to vehicle, on the expression of c-Fos in the NTS following intragastric administration of saline and HCl

<table>
<thead>
<tr>
<th>Intraperitoneal Pretreatment</th>
<th>Intragastric Pretreatment</th>
<th>Number of c-Fos-Positive Nuclei in the NTS</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>saline</td>
<td>9.4±1.9</td>
<td>6</td>
</tr>
<tr>
<td>Dexloxiglumide</td>
<td>saline</td>
<td>13.9±2.7</td>
<td>6</td>
</tr>
<tr>
<td>Itriglumide</td>
<td>saline</td>
<td>7.9±1.0</td>
<td>5</td>
</tr>
<tr>
<td>Vehicle</td>
<td>HCl (0.35 M)</td>
<td>47.4±7.5</td>
<td>6</td>
</tr>
<tr>
<td>Dexloxiglumide</td>
<td>HCl (0.35 M)</td>
<td>40.0±4.8</td>
<td>6</td>
</tr>
<tr>
<td>Itriglumide</td>
<td>HCl (0.35 M)</td>
<td>42.1±7.0</td>
<td>6</td>
</tr>
</tbody>
</table>

Values are means ± SE. Vehicle, dexloxiglumide (45 μmol/kg ip), and itriglumide (10 μmol/kg ip) were injected 30 min before intragastric challenge with saline or 0.35 M HCl. The expression of c-Fos in the NTS was measured 2 h postintra gastric challenge. There were no significant differences.

Fig. 5. Effects of vehicle, dexloxiglumide, and/or itriglumide on the expression of c-Fos by intraperitoneal pentagastrin in the NTS (A) and the area postrema (AP; B) of omeprazole-pretreated rats. All rats were pretreated intraperitoneally with omeprazole (20 μmol/kg) 180 min before examination. Dexloxiglumide (45 μmol/kg) and/or itriglumide (10 μmol/kg) were given intraperitoneally 150 min and pentagastrin (195 μmol/kg) 127 min before the expression of c-Fos in the brain stem was examined. Values are means ± SE; n = 6. **P < 0.01 vs. vehicle + pentagastrin; †††P < 0.01 vs. saline; $P < 0.05 as indicated.
concentration of the noxious chemical but also by the duration of its presence in the gastric lumen and by alterations in gastropyloric motor activity. For this reason, IGP and gastric fluid recovery after intragastric exposure to HCl or NH₄OH were recorded. As has been shown before (20), intragastric administration of an HCl (0.35 M) bolus delayed the adaptation of IGP and enhanced gastric fluid recovery when compared with the responses to a saline bolus. The HCl-induced fluid retention results from inhibition of gastric emptying and enhanced gastric fluid secretion (20), and the underlying gastropyloric motor effects of HCl are mediated by neural reflexes that are initiated both in the stomach and duodenum (14, 20, 25). Unlike HCl, NH₄OH (0.2 M) failed to change the time course of IGP adaptation and to alter gastric fluid recovery. Because the maximal c-Fos response to intragastric HCl and NH₄OH was very similar, it would appear that the afferent input to the NTS is little influenced by the differential gastropyloric motor alterations elicited by intragastric HCl and NH₄OH. It can also be ruled out that the hyperosmolarity of the intragastric HCl and NH₄OH stimuli contributed to the c-Fos response in the NTS, because intragastric administration of 0.5 M NaCl fails to induce c-Fos mRNA in the NTS (28).

Because most experiments in this study were conducted with female rats, it was proven in a separate experiment that male and female rats did not differ in the medullary expression of c-Fos after intragastric exposure to HCl or NH₄OH. Such a gender difference appeared conceivable because somatic pain processing and anincoceptive mechanisms can differ between male and female rats (8, 13) and irritable bowel syndrome is more common in women than in men (9). Whereas it is not known at which level in the gut-brain axis these gender differences occur, the present study shows that the vagal afferent signaling from the HCl- or NH₄OH-threatened stomach to the rat brain stem is not subject to a gender difference.

In addressing the question of whether gastric acid secretion modifies chemosensory afferent inputs from the gastric lumen, we used cimetidine and omeprazole at doses known to effectively suppress basal and stimulated gastric acid secretion in the rat: cimetidine at the dose of 40 μmol/kg (5), omeprazole at the dose of 20 μmol/kg (24), and pentagastrin at a dose (195 μmol/kg) that maximally increases gastric acid secretion in the rat (26). Because cimetidine failed to alter the NTS response to intragastric NH₄OH, it can be ruled out that NH₄OH led to stimulation of vagal afferents because it facilitated the backdiffusion of luminal acid through the NH₄OH-compromised gastric mucosa or because it increased gastrin and gastric acid secretion (30). These arguments reinforce our contention that ammonia per se is able to excite vagal afferents as suggested by other studies (22, 40).

In contrast, cimetidine significantly diminished the NTS response to intragastric HCl. It is very improbable that cimetidine acted directly on vagal afferents or NTS neurons, because the c-Fos response to intragastric NH₄OH was not attenuated by cimetidine, and the inhibitory effect of cimetidine on the HCl-evoked expression of c-Fos was shared by omeprazole. We conclude, therefore, that endogenous acid secretion plays a role in the central c-Fos response to backdiffusing HCl and propose that endogenously secreted acid sensitizes vagal afferents to luminal HCl backdiffusion, much as luminal acid sensitizes mucosal mechanoreceptors (11). It remains to be explored whether gastric acid secretion is at all maintained when supraphysiological HCl concentrations are present in the gastric lumen, how endogenously secreted acid reaches vagal afferent nerve endings in the lamina propria, and whether the parietal cell damage caused by exogenous HCl but not NH₄OH has a bearing on the afferent signaling of gastric HCl challenge. Although a CCK₁ receptor antagonist can reduce vagal afferent excitation by exogenous acid (32), our data negate an involvement of gastrin or CCK, because the intragastric HCl-evoked expression of c-Fos in the NTS remained unaltered by dexloxitiglumide and itriglumide.

Our conjecture that endogenous acid boosts the medullary input from the acid-threatened stomach was further corroborated by the observation that stimulation of gastric acid secretion with pentagastrin enhanced the c-Fos response to excess HCl in an omeprazole-sensitive manner. In addition, intraperitoneal administration of pentagastrin was found to induce c-Fos in the NTS in the absence of luminal HCl exposure. Because the latter effect was not significantly diminished by omeprazole, two mechanisms of pentagastrin action can be differentiated. On the one hand, pentagastrin augments the gastric afferent input caused by luminal HCl backdiffusion through stimulation of endogenous acid secretion, and on the other hand, it excites NTS neurons through an action that is largely independent of gastric acid secretion and mediated by CCK₁ and/or CCK₂ receptors on vagal afferents (6, 36) or neurons in the brain stem (7, 37).

The omeprazole-resistant activation of NTS neurons by pentagastrin was further analyzed with effective and receptor-selective doses of dexloxitiglumide (45 μmol/kg) (33) and itriglumide (10 μmol/kg) (27). The finding that the acid-independent NTS response to pentagastrin was suppressed by dexloxitiglumide and partially inhibited by itriglumide is in keeping with the presence of many CCK₁ and some CCK₂ receptors on nodose ganglion neurons (6, 36). It follows that pentagastrin at the dose used here activates both CCK₁ and CCK₂ receptors and that the acid-independent NTS reaction to peripheral pentagastrin is primarily brought about by stimulation of CCK₁ receptors on vagal afferents. However, the ability of the CCK₂ receptor antagonist itriglumide to markedly attenuate the pentagastrin-evoked stimulation of the NTS is difficult to reconcile with reports that stimulation of vagal afferents by CCK-like peptides is exclusively mediated by CCK₁ receptors (12, 32). Because the pentagastrin-evoked c-Fos expression in the area postrema, unlike that in the NTS, was more sensitive to blockade by itriglumide than by dexloxitiglumide, we postulate a second pathway of pentagastrin-induced stimulation of the NTS. This pathway involves the area postrema, which, similar to other circumventricular organs, is exempt from the blood-brain barrier and thus directly accessible to circulating peptides. Because the area postrema contains many CCK₂ and some CCK₁ receptors (7) and the CCK-induced activation of area postrema neurons is mediated by CCK₂ receptors (37), it is inferred that intraperitoneally administered pentagastrin can enter this brain stem region and induce c-Fos expression primarily via activation of CCK₂ receptors. Importantly, neurons in the area postrema issue output to the NTS and have been shown to facilitate the processing of vagal afferent input to the NTS (4, 18).
In conclusion, vagal afferents transmit both physiological stimuli (gastrin) and pathological events (backdiffusion of luminal HCl or NH₄OH) from the stomach to the brain. These communication modalities interact with each other, given that the gastric acid secretory system modulates vagal afferent nerve traffic through multiple mechanisms. Firstly, vagal afferents are stimulated by gastrin/CCK acting on CCK₁ receptors. Secondly, endogenously secreted acid augments the gastric afferent input evoked by luminal backdiffusion. Thirdly, circulating gastrin can excite area postrema neurons that bear CCK₂ receptors and project to the NTS. The implication of endogenous acid and circulating gastrin in gut-brain communication may have an important bearing on the understanding of acid-related disorders and their symptoms.

ACKNOWLEDGEMENTS

We wish to thank K. Andersson (AstraZeneca, Mölndal, Sweden) for donating a sample of omeprazole and Dr. M. D’Amato (Rotta, Monza, Italy) kindly providing dexloxiglumide and iriglumide.

GRANTS

This work was supported by the Austrian Research Foundation (FWF Grants P14295 and P15452).

REFERENCES

