The American Journal of Physiology-Gastrointestinal and Liver Physiology reports the rapid changes taking place in gastrointestinal and liver research. Exciting new developments in the basic concepts of cell and organ function and new approaches in cell and molecular biology are reported while maintaining the traditional focus on physiology.

The journal's broad scope includes comprehensive coverage of normal and abnormal functions of the gastrointestinal tract, liver, pancreas, gallbladder, and salivary glands. Special features include subject table of contents and theme articles featuring concise, insightful perspectives.

With so many rapid changes taking place in the field, a subscription to AJP-Gastrointestinal and Liver Physiology is a must for all serious researchers in this area.

Authors are required to submit papers online at www.apscentral.org.

Special Features Include:
- Sign-up for e-mail notification of advance tables of contents
- Fully searchable text, including PubMed
- Rich color and sharp resolution of figures
- Editor's Home Page: www.the-aps.org/publications/ajpgi
- Articles in Press: Accepted research papers are now published online within a few days after their acceptance.
- Perpetual/Electronic Archiving: The LOCKSS system preserves the electronic content of all APS journals.

Special APS Member Benefits:
- FREE Online Access to 15 APS Journals and APS Journal Legacy Content: Members of the American Physiological Society (APS) receive FREE online access to both the current content and legacy content (going back as far as 100 years for some journals) of these APS research journals (this free online access includes AJP-Gastrointestinal and Liver Physiology).
- FREE Color Figures: Regular and Emeritus Members of APS who are first or last authors receive FREE color figures in all APS journals.
Under the NIH Public Access Policy, NIH is asking its funded investigators to voluntarily submit to PubMed Central (PMC) the author’s final manuscript of articles resulting from research supported in whole or in part with direct costs from NIH. According to the NIH, this policy applies only to manuscripts accepted for publication on or after May 2, 2005.

If you choose to submit your accepted manuscript to PMC, you will be asked to indicate when that manuscript should be made available to the public. As copyright holder of your article, the APS has the sole right to publish or disseminate it. However, the APS grants you permission to allow public release of your manuscript through PMC 12 months after publication in the print version of an APS journal.

This period of time is consistent with our existing policy to make all content publicly available through HighWire Press 12 months after print publication. NIH will be able to determine when 12 months have elapsed because APS sends NIH electronic feeds of the article metadata upon publication in a journal issue. Therefore, you can submit your accepted manuscript to PMC at the time of acceptance to an APS journal, and will not have to calculate or track time elapsed from publication.

NIH intends to use the PMC database of manuscripts for portfolio management; to create a permanent archive of articles based upon NIH-funded research; and to give the public access to research publications. In announcing this policy, NIH officials underscored that it is voluntary and there will be no sanctions of any kind against authors who do not submit their manuscripts. If you have any questions with respect to the NIH Public Access Policy and the publication of your article in an APS journal, please contact Margaret Reich at mreich@the-aps.org.
The Journal Publishing Program of the American Physiological Society (APS) covers the entire spectrum of physiology—examining major physiological systems, from the cellular and molecular to the organ and system level. These prestigious peer-reviewed journals are available in print and online. An online subscription to the APS journals provides you with immediate access to the latest issue of the journal as well as with continued access to all content published previously online. Subscribers to the online journals also get access to the fastest possible publication of original research articles through our Articles in PresS feature—articles published in manuscript form within a few days of acceptance. The APS journal titles are

- American Journal of Physiology (AJP consolidated)
- AJP-Cell Physiology
- AJP-Endocrinology and Metabolism
- AJP-Gastrointestinal and Liver Physiology
- AJP-Lung Cellular and Molecular Physiology
- AJP-Heart and Circulatory Physiology
- AJP-Regulatory, Integrative and Comparative Physiology
- AJP-Renal Physiology
- Journal of Applied Physiology
- Journal of Neurophysiology
- Physiological Genomics
- Physiological Reviews
- Physiology (formerly News in Physiological Sciences)
- Advances in Physiology Education

The APS Journal Legacy Content

This Legacy Content is available online only and can be purchased separately at a one-time charge. This Legacy Content is free to APS Members (except Affiliate Members). It is a separate program from the Subscription Program in that you pay once ($2,000) for the perpetual access to the online content of 14 APS journals from 1898 to 1996-1998 (depending on the journal). This content goes back to the first issue of each of the APS journals—including APS’s first journal in 1898, the American Journal of Physiology. This Legacy Content can be viewed as completely searchable scanned images of the printed pages.

American Physiological Society
9650 Rockville Pike
Bethesda, MD 20814-3991 (USA)
Tel: (301) 634-7180
Fax: (301) 634-7241
E-mail: subscrip@the-aps.org
Web: www.the-aps.org

8.4.04
The American Physiological Society (APS) brings to its readership another exciting innovation in scientific publishing with Articles in PresS. In partnership with HighWire Press, we publish online—within only days after their acceptance—peer-reviewed papers submitted to our prestigious research journals.

This novel concept dramatically reduces time to publication, accomplishing an important goal of The American Physiological Society of providing researchers all over the world with instant, subscription-based access to the newest literature.

APS Articles in PresS are citable, searchable in PubMed, and will establish publication priority. Only original research papers are published in APS Articles in PresS. Reviews, Editorials, Letters to Editors, Lectures, Commentaries, and other invited materials will be published in the copyedited print and online editions of the appropriate APS Journal.

Once a paper is published online as Article in PresS, it proceeds through the established course of thorough copyediting and production, leading to its publication (about 12 weeks later) in the final print and online editions of the appropriate APS Journal. This final version will bear the date, volume, and page numbers as well as the Articles in PresS publication date and identifier, called the DOI.

After the Journal issue is published in print and online, the final version of the paper will come up on search while the Articles in PresS version will be stored in an accessible, permanent archive.

We hope that this important service to our authors and readers will meet their expectations. View the APS Articles in PresS pages at the journal home pages: ajpcon.org, ajpcell.org, ajpendo.org, ajpgi.org, ajpheart.org, ajplung.org, ajpregu.org, ajprenal.org, jap.org, jn.org, and physiolgenomics.org.
Abbreviations

Listed are abbreviations and their definitions. These may be used without definition in the APS Journals. See Information for Authors (www.the-aps.org/publications/journals/pub_quick.htm) for other abbreviations, symbols, and terminology.

ACCh acetylcholine
ACHT adrenocorticotropic hormone
ADP (CDP), GDP, IDP, UDP, XDP, TDP acetylthiocholine
AM acetoxyethyl ester
AMP, etc. adenosine 5'-monophosphate, etc.
ANG I, etc. angiotensin I, etc.
ANOVA analysis of variance
ATP, etc. adenosine 5'-triphosphate, etc.
ATPase, etc. adenosine 5'-triphosphatase, etc.
AVP arginine vasopressin
BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N',N'',N'''-tetraacetic acid
bpm base pair(s)
BSA bovine serum albumin
CaM calmodulin
CaMK Ca2+ /calmodulin-dependent kinase
CaMKK CaMK kinase
CCK cholecystokinin
cAMP, etc. adenosine 3'-5' cyclic monophosphate, etc.
CaMK Ca2+
CaM calmodulin
CaM kinase
CaMP, etc. adenosine 3',5'-cyclic monophosphate, etc.
CCCP carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
CGP calcitonin gene-related peptide
cDNA complementary DNA
CFTR cystic fibrosis transmembrane conductance regulator
CGRP calcitonin gene-related peptide
CoA coenzyme A (also, acyl-CoA)
CCK cholecystokinin
cAMP, etc. adenosine 3',5' cyclic monophosphate, etc.
CoA coenzyme A (also, acyl-CoA)
CPT cAMP phosphodiesterase
CPT cAMP phosphodiesterase
CRF corticotropin-releasing factor
CIBA concentration giving half-maximal response
eCGP electrophoretic mobility shift assay
eCM extracellular matrix
eDFT electron density functional theory
eEGG ethylene glycol bis(2-aminoethyl ether)-N,N'-disulfonic acid
eGFR electron-gamma filter response
eGU electron-gamma filter response
eHDL high-density lipoprotein
eIAB high-isoelectric focusing
eKDR electron kinetically determined response
eKDR electron kinetically determined response
eL-FAD reduced flavin adenine dinucleotide
eMOP high-molecular-weight monoamine oxidase
DIDS 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid
DMSO dimethyl sulfoxide
dNA deoxyribonucleic acid
dNase deoxyribonuclease
dOEA diethylaminoethyl
dOC deoxyribonuclease
dOCA deoxyribonuclease acetate
Dnase digestion times per minute
DTNB 5,5'-dithiobis(2-nitrobenzoic acid)
DTT dithiothreitol
EcoR concentration giving half-maximal response
eECG electrocardiogram
eECM extracellular matrix
eEDTA ethylenediaminetetraacetic acid
eEG electron-exchange chromatogram
eEGF epidermal growth factor
eEGTA ethylene glycol-bis(2-aminoethyl ether)-N,N'-disulfonic acid
eEPA ethyllophorubum amiloide
ELISA enzyme-linked immunosorbent assay
eEMS electrophoretic mobility shift assay
eERK extracellular signal-regulated kinase
eFAD flavin adenine dinucleotide
FAK reduced flavin adenine dinucleotide
FBS, FCS fetal bovine/calf serum
FCCP carbonyl cyanide-3-(trifluoromethoxy)phenylhydrazone
PGF 15-prostaglandin
FITC fluorescein isothiocyanate
FISH follicle-stimulating hormone
GABA (S)-amino-3-butyric acid
GAP growth-associated protein
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GC-MS gas chromatography-mass spectrometry
GDP/PS guanosine 5'-O-(3'-phosphodiester)
GSH, GSSG reduced and oxidized glutathione
GTPyS guanosine 5'-O-(3'-thiotriphosphate)
GSK glycogen synthetase kinase
Ib hemoglobin
HBSS Hank's balanced salt solution
ICTI hematoцит
HDL high-density lipoprotein
HEFES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
HETE hydroxyeicosatetraenoic acid
HPLC high performance liquid chromatography
I-5-HT 5-hydroxytryptamine (serotonin)
I-5-HT 5-hydroxytryptamine (serotonin)
IgG, etc. immunoglobulin G, etc.
IKK IκB kinase
IL-1 interleukin-1 (IL-2, etc.)
THEMES

GASTROINTESTINAL SATIETY SIGNALS

I. An overview of gastrointestinal signals that influence food intake
S. C. Woods
T. H. Moran
and K. P. Kinzig

II. Cholecystokinin
T. H. Moran
and K. P. Kinzig

III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and
pancreatic polypeptide
S. Stanley, K. Wynne,
and S. Bloom

IV. Apolipoprotein in A-IV
P. Tso, W. Sun,
and M. Liu

PHYSIOLOGICAL BASIS
FOR NOVEL DRUG THERAPIES
USED TO TREAT THE
INFLAMMATORY BOWEL DISEASES

I. Pathophysiological basis and prospects for probiotic therapy in
inflammatory bowel disease
F. Shanahan

SIGNAL TRANSDUCTION PATHWAYS
THAT REGULATE SMOOTH MUSCLE FUNCTION

I. Signal transduction in phasic (esophageal) and tonic
(gastroesophageal sphincter) smooth muscles
K. M. Harnett, W. Cao,
and P. Biancani

II. Receptor-ion channel coupling mechanisms in gastrointestinal
smooth muscle
H. I. Akbarali

III. Coupling of muscarinic receptors to signaling kinases and effector
proteins in gastrointestinal smooth muscles
W. T. Gerthoffer

EPITHELIAL CELLS AND THEIR NEIGHBORS

I. Role of intestinal microfibroblasts in development, repair, and
cancer
D. W. Powell,
P. A. Adegboyega,
J. F. Di Mari,
and R. C. Mifflin

II. New perspectives on efferent signaling between brain
neuroendocrine cells, and gut epithelial cells
G. Flemström
and M. Sjöblom

III. Interactions between intraepithelial lymphocytes and neighboring
epithelial cells
W. L. Havran,
J. M. Jameson,
and D. A. Witherden

IV. Bacterial contributions to intestinal epithelial barrier integrity
A. Ismail
and L. V. Hooper

GASTROINTESTINAL STEM CELLS

I. Pancreatic stem cells
B. Soria,
F. J. Bedoya,
and F. Martin

II. Intestinal stem cells
M. Bjerknes
and H. Cheng

III. Emergent themes of liver stem cell biology: niche, quiescence, self-
renewal, and plasticity
N. D. Theise

IRON IMPORTS

I. Intestinal iron absorption and its regulation
D. M. Frazer and
G. Anderson

II. Iron uptake at the apical membrane in the intestine
B. MacKenzie and
M. D. Garrick

III. Transfer of iron from the mucosa into circulation
M. Wessling-Ressnick