Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets

J. J. Cottrell, B. Stoll, R. K. Buddington, J. E. Stephens, L. Cui, X. Chang, and D. G. Burrin

Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets. Am J Physiol Gastrointest Liver Physiol 290: G293–G300, 2006. First published September 15, 2005; doi:10.1152/ajpgi.00275.2005.—Premature infants receiving chronic total parenteral nutrition (TPN) due to feeding intolerance develop intestinal atrophy and reduced nutrient absorption. Although providing the intestinal trophic hormone glucagon-like peptide-2 (GLP-2) during chronic TPN improves intestinal growth and morphology, it is uncertain whether GLP-2 enhances absorptive function. We placed catheters in the carotid artery, jugular and portal veins, duodenum, and a portal vein flow probe in piglets before providing either enteral formula (ENT), TPN or a confusion of TPN plus GLP-2 for 6 days. On postoperative day 7, all piglets were fed enterally and digestive functions were evaluated in vivo using dual infusion of enteral (13C) and intravenous (2H) glucose, in vitro by measuring mucosal lactase activity and rates of apical glucose transport, and by assessing the abundances of sodium glucose transporter-1 (SGLT-1) and glucose transporter-2 (GLUT2). Both ENT and GLP-2 pigs had larger intestine weights, longer villi, and higher lactose digestive capacity and in vivo net lactate and galactose absorption compared with TPN alone. These endpoints were similar in ENT and GLP-2 pigs except for a lower intestinal weight and net glucose absorption in GLP-2 compared with ENT pigs. The enhanced hexose absorption in GLP-2 compared with TPN pigs corresponded with higher lactose digestive and apical glucose transport capacities, increased abundance of SGLT-1, and lower intestinal metabolism of [13C]glucose to [13C]lactate. Our findings indicate that GLP-2 treatment during chronic TPN maintains intestinal structure and lactose digestive and hexose absorptive capacities, reduces intestinal hexose metabolism, and may facilitate the transition to enteral feeding in TPN-fed infants.

TPN reduces intestinal blood flow and alters the metabolism of the intestinal mucosa, including decreased protein synthesis and increased glucose metabolism (5, 7, 14, 31). Given that most preterm infants receive some degree of TPN before commencement of enteral feeding, it is conceivable that TPN may compromise the transition to full enteral feeding. Glucagon-like peptide-2 (GLP-2) is a gut hormone that is postranslationally processed from the proglucagon gene product localized in enteroendocrine L cells in response to enteral nutrition, especially carbohydrate and lipid (13, 20, 28, 36). A robust intestinal trophic response to GLP-2 treatment has been observed in many studies due in part to stimulation of epithelial cell survival, crypt cell proliferation, and protein synthesis (2, 6, 8, 12, 17, 40). GLP-2 may be useful in the clinical management of TPN-fed neonates, because it has been approved for treatment of adult short-bowel syndrome and many of its biological actions counteract the negative effects of TPN. Increased villus height after GLP-2 treatment is accompanied by increased intestinal disaccharidase and peptidase expression and activity (2). Moreover, transient increases in basolateral glucose net uptake have been observed in GLP-2-treated rodents and in TPN-fed piglets (17). The GLP-2-mediated stimulation of glucose uptake in rodents has been linked to increased intestinal abundance of sodium glucose transporter-1 (SGLT-1) in the brush-border membrane (BBM) (10).

It was previously shown (5) that chronic TPN induces hexose malabsorption in vivo in neonatal piglets and that this was associated with mucosal villus atrophy and reduced intestinal blood flow and lactase activity. We also observed that chronic TPN resulted in increased intestinal lactate release, indicative of increased mucosal glycolytic metabolism. Thus, given previous evidence of the intestinal trophic and vasoactive actions of GLP-2, we hypothesized that GLP-2 treatment of TPN-fed piglets would prevent mucosal atrophy and maintain normal intestinal lactase activity and hexose absorptive function, facilitating the transition from TPN to enteral nutrition. The dose of GLP-2 used in this study was selected based on previous evidence that it produced a robust intestinal trophic response and supraphysiological plasma GLP-2 concentration in TPN-fed piglets (6). Moreover, the current dose used also corresponds to the pharmacological GLP-2 dose used in a recently published clinical study with short-bowel patients (23). Therefore, the aim of this experiment was to quantify intestinal lactose digestion and hexose metabolism in piglets nourished on chronic TPN or TPN plus GLP-2 infusion for 6 days.
days. To quantify the metabolic fate of intestinal glucose metabolism, we used a dual infusion of enteral \((^{13}C)\) and intravenous \((^{1}H)\) glucose, respectively, and further characterized the mucosal and cellular determinants of glucose transport, including SGLT-1 and glucose transporter-2 (GLUT-2) abundance.

MATERIALS AND METHODS

Animals and experimental design. Neonatal crossbred piglets (Large White × Hampshire × Duroc) were acquired from the Texas Department of Criminal Justice (Huntsville, TX) at 4 days of age. Piglets were fed enterally for 7 days with 50 g/kg body wt sow milk formula (Litter Life; Merrick, Middleton, WI), which consisted of the following: 527 g lactose, 100 g fat, and 250 g protein. The protocol was approved by the Animal Care and Use Committee of the Baylor College of Medicine and was conducted in accordance with the National Research Council’s Guide for the Care and Use of Laboratory Animals.

The surgical procedure used in this experiment has been described previously (5, 38). In summary, after overnight food withdrawal, catheters were surgically inserted into the carotid artery, jugular vein, portal vein, and duodenum. Additionally, ultrasonic flow probes (65-8S, Transonics, Ithaca, NY) were implanted on the portal vein at 11 days of age. All piglets received TPN for 24 h during surgical recovery, after which piglets were assigned to one of the following treatments: enteral formula (ENT; \(n = 4\)), continuous intravenous infusion of TPN via the jugular vein (TPN; 240 mJ·kg\(^{-1}\)·day\(^{-1}\), \(n = 10\)), or TPN plus coinfusion of GLP-2 (500 pmol·kg\(^{-1}\)·h\(^{-1}\), \(n = 9\)) for 7 days. Human GLP-2 was mixed in sterile 0.9% NaCl with 0.1% human serum albumin vehicle (American Peptide). Piglets were weighed daily, and feed intake was adjusted according to the National Research Council’s formula (Litter Life; Merrick, Middleton, WI), which consisted of the following: 35% crude protein, 25% crude fat, 35% crude fiber, and 5% crude ash. The macronutrient and fluid intake was measured and weighed. Ten-centimeter lengths of proximal and distal small intestinal segments and mounted sleeves were kept in cold (2–4°C), aerated Ringer solution. Tracer concentrations of \[^{14}C\]D-glucose and \[^{3}H\]L-lactate (American Radiolabelled Chemicals) were added to the incubation solutions to respectively quantify the amount of D-glucose and L-lactate transport into the intestinal lumen. In the incubation, the sleeves were rinsed for 20 s in cold, glucose-free Ringer solution. Beginning 45 min after death, the sleeves were first incubated for 5 min in 37°C aerated ringers before they were transferred for 2 min in 37°C aerated ringers containing 0.2, 1, 5, 25, or 50 mM unlabeled lactate. After the incubation, the sleeves were rinsed for 20 s in cold, glucose-free Ringer solution. Tracer concentrations of \[^{13}C\]glucose and \[^{3}H\]lactate (American Radiolabelled Chemicals) were added to the incubation solutions to respectively quantify the amount of \(\delta\)-glucose associated with the active tissues and to correct for \(\delta\)-glucose associated with the adherent fluid, and they were passively absorbed independent of carriers. After the rinse, the sleeves were removed from the rods, washed, and frozen at 95% \(\mathrm{O}_2\) with 5% \(\mathrm{CO}_2\). Glucose uptake.

Calculations.

The net portal balance (NPB) of glucose and galactose was calculated using the difference in the portal (\(C_{\text{portal}}\)) and arterial (\(C_{\text{a}}\)) concentrations and portal blood flow (PBF) (1). In the calculations of portal glucose and lactate kinetics, PBF was converted to
Table 1. Intestinal weight, protein and DNA contents, and lactase activities in neonatal piglets fed for 7 days with enteral, TPN, or TPN with GLP-2 and then fed enterally for 6 h

<table>
<thead>
<tr>
<th></th>
<th>Enteral</th>
<th>TPN</th>
<th>TPN + GLP-2</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal wt, g/kg body wt</td>
<td>50.9 ± 2.09a</td>
<td>29.4 ± 1.48b</td>
<td>35.6 ± 1.41c</td>
<td><0.001</td>
</tr>
<tr>
<td>Intestinal protein, mg/kg body wt</td>
<td>6.235 ± 369a</td>
<td>2.99 ± 233b</td>
<td>4.261 ± 235c</td>
<td><0.001</td>
</tr>
<tr>
<td>Intestinal DNA, mg/kg body wt</td>
<td>201 ± 13.6a</td>
<td>141 ± 8.6b</td>
<td>169 ± 8.6c</td>
<td>0.004</td>
</tr>
<tr>
<td>Villus height, μm</td>
<td>Jejunum 943 ± 120a</td>
<td>352 ± 90b</td>
<td>722 ± 81c</td>
<td>0.002</td>
</tr>
<tr>
<td>Ileum 1,456 ± 222a</td>
<td>387 ± 157b</td>
<td>1,057 ± 150c</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Lactase-specific activity, μmol.min⁻¹.g protein⁻¹</td>
<td>75.5 ± 12.1a</td>
<td>36.6 ± 8.07b</td>
<td>52.5 ± 7.49c</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Values are means ± SE, the number of animal per group were enteral (6), total parenteral nutrition (TPN) (10), and TPN + glucoselike protein-2 (GLP-2) (9). Different superscripts indicate statistical differences between treatment for jejunum and ileum based on analysis of variance and Tukey’s test (P < 0.05).
Table 3. Plasma concentrations and net portal balances of glucose, galactose and lactate in neonatal piglets fed enterally, with TPN, or TPN with GLP-2 infusion for 7 days, then fed enterally for 6 h

<table>
<thead>
<tr>
<th></th>
<th>Enteral</th>
<th>TPN</th>
<th>TPN + GLP-2</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial, mM</td>
<td>6.81±0.215</td>
<td>7.02±0.140</td>
<td>6.84±0.155</td>
<td>0.60</td>
</tr>
<tr>
<td>Portal, mM</td>
<td>7.99±0.277</td>
<td>7.61±0.175</td>
<td>7.65±0.199</td>
<td>0.50</td>
</tr>
<tr>
<td>Net portal balance, mmol/kg·h⁻¹ % Intake</td>
<td>3.86±0.417a</td>
<td>1.25±0.275b</td>
<td>2.29±0.305c</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>93±10.6a</td>
<td>31±7.0b</td>
<td>58±7.7c</td>
<td></td>
</tr>
<tr>
<td>Galactose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial, mM</td>
<td>0.45±0.044a</td>
<td>0.36±0.028a</td>
<td>0.64±0.032b</td>
<td><0.001</td>
</tr>
<tr>
<td>Portal, mM</td>
<td>1.15±0.085a</td>
<td>0.66±0.054b</td>
<td>1.31±0.061c</td>
<td><0.001</td>
</tr>
<tr>
<td>Net portal balance, mmol/kg·h⁻¹ % Intake</td>
<td>2.24±0.34a</td>
<td>1.08±0.218b</td>
<td>2.03±0.248a</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>55±8.5a</td>
<td>27±5.4b</td>
<td>52±6.1a</td>
<td></td>
</tr>
<tr>
<td>Lactate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial mM</td>
<td>0.81±0.117a</td>
<td>1.17±0.074b</td>
<td>0.96±0.086b</td>
<td>0.022</td>
</tr>
<tr>
<td>Portal mM</td>
<td>0.90±0.110b</td>
<td>1.53±0.081b</td>
<td>1.27±0.081b</td>
<td><0.001</td>
</tr>
<tr>
<td>Net portal release, mmol/kg·h⁻¹</td>
<td>0.33±0.320b</td>
<td>1.44±0.202b</td>
<td>0.92±0.235b</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Values are means ± SE, the number of animal per group were enteral (4), TPN (10), and TPN+GLP-2 (9). Different superscripts indicate statistical differences between treatment for jejunum and ileum based on analysis of variance and Tukey’s test (P < 0.05).

not different among treatments (Table 3). However, glucose NPB was highest in ENT-fed piglets, comprising 93% of intake. Values for TPN and GLP-2 were lower (27% and 58% of intake, respectively), suggesting both groups had incomplete digestion and absorption of the administered lactose. Arterial galactose concentrations were increased by GLP-2 compared with ENT and TPN, and this was independent of concomitant increases in portal galactose concentrations, which did not differ from those of ENT piglets. The lowest portal galactose concentrations were measured in TPN-treated piglets (P < 0.05 compared with ENT and GLP-2 piglets). Galactose NPB was ~55% of intake in ENT-fed piglets, considerably <93% of intake for glucose absorption. Although this may seem low, this is higher than 38% observed for ENT-fed piglets in a prior experiment (5). TPN reduced galactose NPB to 27% of dietary intake, whereas GLP-2 improved galactose uptake approximately twofold (52%), which was comparable with ENT-fed piglets.

TPN resulted in a higher arterial lactate concentration compared with ENT, whereas GLP-2-treated piglets were intermediate and did not differ from ENT and TPN piglets. Similarly portal vein plasma lactate concentrations were elevated in piglets receiving TPN but less so when GLP-2 was administered. Net portal release of lactate was lowest in ENT-fed piglets, highest in TPN-fed piglets, and intermediate for GLP-2 piglets. Thus mucosal glycolysis was elevated in TPN and, to a lesser degree, GLP-2 groups, which was confirmed by [13C]lactate kinetics.

Due to a small sample size and some sample error, it was not possible to calculate in vivo [13C]glucose and [2H]glucose tracer kinetics for ENT-fed piglets. Comparisons of in vivo [13C]glucose and [2H]glucose tracer kinetics are restricted to the TPN and GLP-2 treatments (Table 4). Treatment effects were not detected for arterial and portal [13C]glucose IE and concentrations, despite trends of lower portal IE and arterial concentrations in GLP-2-infused piglets. Likewise, [13C]glucose absorption, utilization, or whole blood flux did not differ between TPN and GLP-2 piglets. However, arterial and portal [13C]lactate enrichment and concentrations and net portal [13C]lactate production were significantly higher in TPN piglets (Table 5), suggesting TPN alone elevated intestinal glycolysis. As per intestinal CO2 production, [13CO2] production was not different between TPN and GLP-2. To discriminate between first pass metabolism of [13C]glucose and metabolism of arterial glucose by the PDV, intravenous coinfusion of [3H]glucose was performed (Table 5). GLP-2 infusion in
Table 5. Rates of portal $[^{13}C]$lactate, and $[^{13}C]$CO$_2$ kinetics in neonatal piglets fed enterally, with TPN, or TPN with GLP-2 infusion for 7 days, then fed enterally for 6 h.

<table>
<thead>
<tr>
<th></th>
<th>TPN</th>
<th>TPN + GLP-2</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial $[^{13}C]$lactate enrichment (MPE)</td>
<td>1.33±0.057</td>
<td>1.17±0.066</td>
<td>0.068</td>
</tr>
<tr>
<td>Portal $[^{13}C]$lactate enrichment (MPE)</td>
<td>1.41±0.060</td>
<td>1.20±0.068</td>
<td>0.021</td>
</tr>
<tr>
<td>Net portal $[^{13}C]$lactate production, mmol·kg$^{-1}$·h$^{-1}$</td>
<td>0.027±0.0041</td>
<td>0.014±0.0046</td>
<td>0.042</td>
</tr>
<tr>
<td>Arterial $[^{13}C]$CO$_2$ enrichment (MPE)</td>
<td>0.14±0.011</td>
<td>0.18±0.012</td>
<td>0.028</td>
</tr>
<tr>
<td>Portal $[^{13}C]$CO$_2$ enrichment (MPE)</td>
<td>0.15±0.009</td>
<td>0.18±0.011</td>
<td>0.038</td>
</tr>
<tr>
<td>Portal $[^{13}C]$CO$_2$ production, mmol·kg$^{-1}$·h$^{-1}$</td>
<td>0.022±0.0067</td>
<td>0.008±0.0072</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Values are means ± SE, the number of animals per group were TPN (10) and TPN+GLP-2 (9) ($P < 0.05$).

creased whole body $[^{3}H]$glucose flux, which is consistent with the increased intestinal capacities to absorb glucose (see below). Second-pass glucose metabolism did not appear to be affected by administering GLP-2, because portal $[^{3}H]$glucose utilization and extraction of intravenous $[^{3}H]$glucose did not differ between TPN and GLP-2 piglets.

The V_{max} for apical glucose uptake in the jejunum was highest in ENT piglets, whereas values for TPN pigs were reduced by approximately two thirds after chronic TPN (Fig. 1). GLP-2 increased the V_{max} compared with TPN, but values remained lower than ENT. This pattern was also apparent in the ileum, with the exception that the protective effect of GLP-2 on V_{max} was not apparent. The treatment differences in V_{max} were independent of changes in the K_m. Total intestinal lactose digestive capacities of ENT piglets (Fig. 2) exceeded the lactose intake by more than fivefold. The excess capacity was reduced in TPN piglets to about twofold, with GLP-2 increasing total hexose absorptive capacities by 10.22±0.33.6 on June 26, 2017 http://ajpgi.physiology.org/ Downloaded from

Despite differences in V_{max} and glucose transport capacity, abundances of SGLT-1 detected by Western blotting in the jejunum BBM and mucosa did not differ between TPN and ENT piglets (Fig. 3). However, BBM and mucosa SGLT-1 abundance was higher in GLP-2 compared with TPN piglets. SGLT-1 was not reliably detected in mucosal homogenates from the ileum (data not shown). TPN significantly reduced ileum BBM SGLT-1 abundance compared with ENT-fed piglets, with an intermediate abundance for GLP-2 piglets. Jejunum and ileum mucosal GLUT-2 abundance did not differ among treatments (Fig. 4). Jejunum BBM prepared from TPN and GLP-2 piglets had 10-fold higher abundances of GLUT-2 piglets, providing GLP-2 did not result in capacities that exceeded total hexose intake.
Lactose hydrolysis in TPN-fed piglets was significantly lower than in ENT-fed piglets, suggesting that the TPN-induced mucosal atrophy causes functional defects in lactose digestion (5). GLP-2 treatment during TPN maintained lactase-specific activity and hence digestive capacity, consistent with other findings for lactase and other BBM disaccharidases in piglets and mice (2, 33–35). Moreover, the GLP-2 treatment maintained lactose digestive capacity at a level twice that of TPN-fed piglets and approximately four times higher that the lactose intake during refeeding. The lactose digestive capacity was greatest for ENT piglets being approximately eight times higher than the lactose intake. Consistent with the estimated excess lactose digestive capacities, the lactose recovery from the stomach and intestine was <1%, with similarly low values for GLP-2 and ENT piglets. Thus, although we did not account for lactose that could have passed into the colon or lost via mild diarrhea during the 6-h refeeding period, the low recovery of lactose is congruent with rapid digestion. Interestingly, lactase activity is considered to be the limiting factor for lactose digestion in adults (11, 16, 32), whereas our findings indicate lactase activity of pigs is in excess, even for those maintained by TPN. This likely reflects the developmentally high lactose digestive capacity in neonates (32).

One of the principal findings of this experiment was that GLP-2 resulted in higher absorption of glucose and galactose during the refeeding period compared with TPN. As observed previously (5), chronic TPN markedly reduced in vivo glucose absorption to ~30% of intake; this was only one-third the rate (90%) found in ENT-fed piglets. Infusion of GLP-2 partially maintained glucose uptake at ~58% of intake, yet this was still less than ENT. The net rate of intestinal glucose absorption is determined by the combined processes of apical mucosal transport and mucosal metabolism. We previously reported that TPN increased intestinal glucose metabolism to lactate, reducing glucose appearance in the portal vein. In this study, the simultaneous infusion of enteral [13C] and intravenous [2H] glucose isotopes during the refeeding period allowed us to determine that intestinal production of [13C]lactate was halved in GLP-2-infused piglets compared with piglets receiving TPN alone. Furthermore, utilization of intravenous [3H]glucose in second-pass metabolism was considerably less (<10% of intake) compared with first-pass utilization of enteral [13C]glucose (~66% of intake). These findings indicate that enterally absorbed glucose was the principal source of glucose metabolized during the refeeding of the TP and GLP-2 treatments. Although there was no difference in [13C]glucose absorption, it is noteworthy that GLP-2 increased the [2H]glucose whole body flux. This is most likely due to an increase in glucose absorption in GLP-2-treated piglets, rather than an increase in endogenous glucose release, because the increase in whole body [3H]glucose flux with GLP-2 treatment (~1.2 mmol·kg⁻¹·h⁻¹) was largely accounted for by increased glucose absorption (~1.0 mmol·kg⁻¹·h⁻¹). Collectively, the NPB of glucose and increased [3H]glucose flux indicate that GLP-2 treatment increased in intestinal glucose absorption and reduced intestinal glycolytic metabolism.

The findings for in vivo glucose absorption were consistent with apical glucose transport capacities calculated from in vitro measurements, with both showing that capacities were lowest for TPN, intermediate for GLP-2, and highest for ENT piglets. Apical glucose transport capacities measured in this experi-

Fig. 4. Jejunal (A) and ileum (B) BBM GLUT-2 abundance in piglets given ENT, TPN, or TPN + GLP-2 for 6 days and then refed enterally for 6 h. Means ± SE, the nos. of animals per group were enteral (4), TPN (10), and TPN + GLP-2 (9). Different superscripts indicate statistical differences between treatment for BBM and mucosa based on analysis of variance and Tukey’s test (P < 0.05). Differing superscripts are used to denote statistical treatment differences for BBM (a, b) and mucosa (x, y).

compared with ENT piglets. GLUT-2 abundances in the BBM prepared from the ileum were lower for GLP-2 compared with ENT and TPN piglets.

DISCUSSION

The functional and metabolic disturbances during chronic TPN and refeeding are associated with reduced intestinal glucose absorption, protein synthesis, and blood flow (9). This led us to postulate that reduced hexose absorption after chronic TPN occurred via a combination of either reduced hexose transporter abundance or increased mucosal glucose metabolism. The current study was designed to test whether a pharmacological dose of GLP-2, which prevents TPN-induced mucosal atrophy, translates into improved intestinal glucose absorption in piglets during refeeding. The dose of GLP-2 used in this study was selected based on previous evidence that it produced a robust intestinal trophic response and supraphysiological plasma GLP-2 concentration in TPN-fed piglets (6). Consistent with previous experiments, TPN induced mucosal atrophy and reduced intestinal weight, villus height, villus area, protein and DNA content, and lactose digestive capacity (5, 22, 29, 31). Our results also indicate that the protective effect of GLP-2 was demonstrated by improvement in all of these parameters compared with TPN-fed piglets. Our results indicate that GLP-2 treatment was able to partially maintain in vivo intestinal hexose absorptive function in TPN-fed piglets. Moreover, we show that the GLP-2-induced increase in hexose absorptive capacity occurred via increased villus surface area and upregulation of intestinal glucose transport and reduced intestinal glycolytic metabolism.

Fig. 4. Jejunal (A) and ileum (B) BBM GLUT-2 abundance in piglets given ENT, TPN, or TPN + GLP-2 for 6 days and then refed enterally for 6 h. Means ± SE, the nos. of animals per group were enteral (4), TPN (10), and TPN + GLP-2 (9). Different superscripts indicate statistical differences between treatment for BBM and mucosa based on analysis of variance and Tukey’s test (P < 0.05). Differing superscripts are used to denote statistical treatment differences for BBM (a, b) and mucosa (x, y).
GLP-2 improves glucose absorption after TPN

In summary, the current study provides novel in vivo evidence that the intestinal trophic effects of GLP-2 treatment during TPN translate into improved intestinal function. We found that chronic GLP-2 treatment during 6 days TPN improved in vivo glucose and galactose absorption during 6 h of refeeding. This was attributed to the ability of GLP-2 to maintain intestinal villus surface area, increase lactose digestive and apical transport capacities of hexoses in addition to reduced intestinal glycolytic metabolism. Although poor gastric emptying and motor function contribute to feeding intolerance in premature infants, the transition to enteral feeding is limited by poor intestinal digestion and glucose absorption. Thus these findings provide support for future clinical studies in infants to assess whether GLP-2 treatment during TPN improves intestinal digestion and absorptive function, thereby accelerating the transition to enteral feeding and reducing the time to full feeding.

Acknowledgments

The authors thank M. Riedijk for assistance during the experiment and X. Guan and B. Nichols for helpful discussions.

Grants

This work was supported by National Institutes of Health Grant HD-33920 (to D. G. Burrin) and by the USDA-ARS under Cooperative Agreement Number 58-6250-6-001.

Disclosures

The contents of this publication do not necessarily reflect the views or policies of the U.S. Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

References

22. Helliwell PA, Richardson M, Affleck J, and Kellett GL.

19. Dahlqvist A and Thomson DL.

20. Drucker DJ, Erlich P, Asa SL, and Brubaker PL.

12. Dube PE and Brubaker PL.

10. Cheeseman CI.

G300 GLP-2 IMPROVES GLUCOSE ABSORPTION AFTER TPN

