Comparison of rectoanl axial forces in health and functional defecatory disorders

Adil E. Bharucha,1 Andrew J. Croak,2 John B. Gebhart,3 Barbara M. Seide,1 Alan R. Zinsmeister,3 and Kai-Nan An3
1Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Department of Medicine, 2Division of Gynecologic Surgery, 3Orthopedics
Biomechanics Laboratory, and 4Division of Biostatistics, Mayo Clinic, Rochester, Minnesota

Submitted 12 October 2005; accepted in final form 23 January 2006

Bharucha, Adil E., Andrew J. Croak, John B. Gebhart, Lawrence J. Berglund, Barbara M. Seide, Alan R. Zinsmeister, and Kai-Nan An. Comparison of rectoanl axial forces in health and functional defecatory disorders. Am J Physiol Gastrointest Liver Physiol 290: G1164–G1169, 2006.—Anal manometry measures circumferential pressures but not axial forces that are responsible for defe- cation and contribute to fecal continence. Our aims were to investigate these mechanisms by measuring axial rectoanl forces with an intra- rectal sphere or a latex balloon fixed at 8, 6, or 4 cm from the anal verge and connected to axial force and displacement transducers. Rectoanl forces and rectal pressures within a latex balloon were measured at baseline (i.e., at rest) and during maneuvers (i.e., squeeze, simulated evacuation, and a Valsalva maneuver) in 12 symptomatic women and 12 women with symptoms of difficult defecation. Anal resting and squeeze pressures were also assessed by manometry and were similar in control patients and experimental patients. At rest, axial rectoanl forces were directed inward and increased as the device approached the anal verge. Control patients augmented this inward force when they squeezed and exerted an outward force during simulated expulsion and a Valsalva maneuver. The force change during maneuvers was also affected by device location and was highest at 4 cm from the verge. In experimental patients, the force at rest and the change in force during all maneuvers was lower than in control patients. The rectal pressure during a Valsalva maneuver was also lower in experimental patients than in control patients, suggestive of impaired propulsion. In conclusion, a subset of women with defecatory symptoms had weaker axial forces not only during expulsion but also when patients strained (i.e., contracted) their pelvic floor muscles, suggestive of generalized pelvic floor weakness.

Address for reprint requests and other correspondence: A. E. Bharucha, Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Mayo Clinic (CH 8–110), 200 First St. SW, Rochester, MN 55905 (e-mail: bharucha.adil@mayo.edu).

CURRENT CONCEPTS SUGGEST that defecation is accomplished by increased intrarectal pressure coordinated with relaxation of the pelvic floor muscles. In addition to the internal and external anal sphincters, the pelvic floor muscles, especially the puborectalis, also relax during normal defecation (18). However, several aspects of the anorectal functions responsible for fecal continence and defecation are poorly understood, partly because our understanding is primarily based on manometry, which measures anorectal radial pressures but not axial forces that are responsible for defecation and contribute to fecal continence. First, although a functional disorder of defecation has been traditionally attributed to impaired relaxation of the anal sphincter and/or pelvic floor muscles (i.e., dyssynergia), recent studies suggest that inadequate propulsive forces may also be important (15, 16). These studies need to be confirmed. Moreover, the mechanisms responsible for generating the propulsive force during defecation, which is assessed by recording pressure in the rectum, are unclear. Specifically, the contributions of increased intra-abdominal pressure generated by voluntary effort (12) and rectal contraction (9) to this propulsive force have been disputed. This is an important issue because straining may increase intrarectal pressure but not improve evacuation (16), perhaps because the pelvic floor muscles also contract during straining (17). Second, though clinical observations suggest that the location of stool affects the ease of evacuation, it is unclear if axial rectoanl forces vary along the length of the rectum. Thus patients with a defecatory disorder often report it is harder to evacuate stool located in the upper rectum (i.e., the vault) than the lower rectum (i.e., the ampulla). Third, though defecatory symptoms are attributed to impaired pelvic floor relaxation during defecation, we recently demonstrated that pelvic floor motion assessed by dynamic MRI was abnormal not only during evacuation but also when patients contracted their pelvic floor muscles to retain intrarectal contents (3). These observations need to be confirmed by measuring anorectal forces during contraction and expulsion.

To address these questions, we measured anorectal axial forces exerted against a rigid sphere or a latex balloon at specified locations in the anorectum during rectal expulsion and inward traction (REIT) in healthy control subjects and experimental patients with symptoms of difficult defecation by a new device (i.e., the REIT device). Previous studies have evaluated axial rectoanl forces to assess the mechanisms of fecal continence, but not defecation (7, 8, 10). These studies have demonstrated that the axial force measured by an infra- rectal solid sphere was correlated with anal pressures measured by manometry (7, 10). Moreover, the inward axial force, reflecting contraction of the anal sphincters and the pelvic floor, was reduced in patients with fecal incontinence (8, 10).

MATERIAL AND METHODS

Participants

Twelve healthy women (age 31.3 ± 2.3 yr, means ± SE) and 12 women with symptoms of difficult defecation (age 44.5 ± 4.3 yr, means ± SE) consented to participate in this study, which was

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

G1164
0193-1857/06 $8.00 Copyright © 2006 the American Physiological Society http://www.ajpgi.org
approved by the Institutional Review Board of the Mayo Clinic. A clinical interview and physical examination were performed for all participants. Healthy control patients were recruited by public advertisement. Exclusion criteria for control patients included significant cardiovascular, respiratory, neurological, psychiatric, or endocrine disease, irritable bowel syndrome or thyroid supplementation, and abdominal surgery (other than appendectomy or cholecystectomy). In addition, healthy subjects who had any previous anorectal operations including hemorrhoid procedures or had sustained anorectal trauma during delivery (i.e., grade 3 or 4 laceration), as documented by obstetric records, were excluded. Experimental patients were recruited from a specialized clinic devoted to gastrointestinal motility disorders. All experimental patients had two or more symptom-based criteria for functional constipation (18). Colonic motor functions were evaluated by assessing colonic transit with scintigraphy in eight experimental patients (6) or by assessing colonic motility (i.e., tonic and phasic pressure activity in the descending colon under fasting conditions, patients (6) or by assessing colonic motility (i.e., tonic and phasic pressure activity in the descending colon under fasting conditions, after a meal, and after neostigmine by a barostat-manometric assembly). Overall Study Design

On the morning of the study, subjects received two magnesium citrate enemas (Fleet; C. B. Fleet, Lynchburg, VA). Shortly thereafter, anorectal pressures and axial forces were measured by manometry and an axial force transducer, respectively. Prior to the anorectal assessments, an investigator, aided by a digital rectal examination, coached subjects to contract the anal sphincter and pelvic floor muscles, to simulate the process of expulsion, and to do a Valsalva maneuver.

During simulated expulsion, subjects were encouraged to mimic the process they usually employed to defecate. During a Valsalva maneuver, subjects were instructed to expire forcefully against a closed glottis.

Anal Manometry, Rectal Balloon Expulsion, and Rectal Sensation

After two sodium phosphate enemas (Fleet, C. B. Fleet), anorectal testing (i.e., manometry, assessment of rectal compliance and sensation by a barostat, and assessment of rectal traction) was conducted in the left lateral position by perfusion manometry. The manometric catheter assembly had eight sensors, i.e., four circumferentially oriented sensors at each of two levels separated by 2 cm. Average anal resting and squeeze pressures were measured by the distal group of four sensors using the station pull-through technique and summarized as described previously (5). The rectoanal pressure gradient was measured during expulsion; data were summarized by the difference between rectal and anal pressure, averaged over a 10-s interval during which anal pressure was at its lowest. The amount of external traction required to facilitate expulsion of a rectal balloon filled with 50 ml of warm water was also assessed in experimental patients (3, 14). Rectal compliance and sensation were recorded using previously validated techniques by an "infinitely" compliant 7-cm-long balloon with a maximum volume of 500 ml (Hefty Baggies; Mobil Chemical, Pittsford, NY) linked to an electronic rigid-piston barostat (Mayo Clinic, Rochester, MN) (2, 5). An initial or conditioning distension followed by a rectal staircase distension (0–32 mmHg in 4-mmHg steps at 1-min intervals) was performed. Rectal compliance and sensory thresholds for first sensation, desire to defecate, and urgency were recorded during the staircase distension; the threshold was the first sensation of each symptom. Rectal pressure-volume relationships were analyzed by a power exponential function and summarized by the pressure corresponding to half maximum volume (P_{max})(2, 11).

Rectal Traction

Procedure. Rectoanal axial forces were measured by a customized REIT device adapted after a similar device described previously (7) (Fig. 1). This device comprised an intrarectal device (i.e., either a latex balloon or a rigid sphere 2.5 cm in diameter) that was connected to a tension-compression (Transducer Techniques, Temecula, CA) and linear-displacement transducers (Novotechnik, Ostfildern, Germany) and interfaced to a computer. The intrarectal device was fixed at 8, 6, or 4 cm from the anal verge. We chose to use a sphere 2.5 cm in diameter because Bannister et al. (1) demonstrated that normal subjects could invariably expel a sphere of this size. The latex balloon was filled with 60 ml of water, and the intraballoon pressure was also measured during maneuvers. Each maneuver began with a baseline period of 20 s, during which the resting force was assessed. Thereafter, subjects were asked to squeeze (i.e., contract) their pelvic floor and anal sphincter muscles for 30 s, or to expel the device for 30 s, or to do a Valsalva maneuver for 20 s, in that order. A rest period of 30 s

![Fig. 1. Rectal expulsion and inward traction (REIT) device. A sphere (thin arrow) or a latex balloon (not shown) were connected to a pressure transducer (thick arrow) and to axial-force and linear-displacement transducers (arrow-head).](image)

![Fig. 2. Representative example of rectoanal axial forces during squeeze, expulsion, and a Valsalva maneuver.](image)
separated consecutive maneuvers. Data were acquired, displayed, and analyzed by a customized Labview-based program (National Instruments, Austin, TX).

Data analysis. In each subject, the baseline resting force was averaged over 10 s immediately prior to each maneuver. The force change during maneuvers was calculated by subtracting the baseline force from the force during maneuvers.

Statistical Analysis

Axial rectoanal forces at baseline and the force change during maneuvers (i.e., squeeze, expulsion, and a Valsalva maneuver) were analyzed by a mixed-model analysis of covariance, fitting terms for location, maneuver, and subject status (i.e., experimental patient or control patient). To validate the measurements of force, the relationship between force and pressure was assessed separately for each maneuver with a latex balloon in each subject. The relationship between the rectoanal pressure gradient during expulsion measured by manometry and the force change during expulsion was also assessed. All results are means ± SE.

RESULTS

Clinical Features

Consistent with the Rome II criteria, all experimental patients reported two or more symptoms of functional constipation for ≥25% of the time. Symptoms included excessive straining during defection (92% experimental patients), hard stools (62%), sense of incomplete evacuation after defection (92%), sense of anorectal blockage or obstruction (69%), infrequent stools (i.e., less than 3 times per week; 85%), and digital removal of stool from the rectum (77%). The duration of symptoms ranged from <1 yr (n = 2), 1–5 yr (n = 4), 5–10 yr (n = 2), or more than 10 yr (n = 4).

Anorectal Manometry, Standard Rectal Balloon Expulsion, and Colonic Motor Functions

Average anal resting pressures were comparable in control patients (66 ± 6 mmHg) and experimental patients (65 ± 7 mmHg). Average squeeze pressures were also comparable in control patients (150 ± 17 mmHg) and experimental patients (137 ± 16 mmHg). Ten experimental patients had an abnormal rectal balloon expulsion test and/or an abnormal rectoanal pressure gradient during simulated expulsion. The rectal balloon expulsion test was normal (i.e., ≤100 g traction required) in four and abnormal in eight experimental patients. The rectoanal pressure gradient during expulsion was also abnormal in eight experimental patients, including two patients who had a normal rectal balloon expulsion test. Seven experimental patients had normal colonic motility assessed by scintigraphy (6 patients) or by an intraluminal colonic barostat-manometric assembly (1 patient). Two experimental patients had delayed colonic transit.

Rectal Compliance and Sensation

During rectal staircase balloon distension, 9 of 12 subjects tolerated distension up to the highest pressure, i.e., 32 mmHg. Because of significant discomfort, this distension was terminated at 12 and 24 mmHg in 2 subjects, precluding an assessment of rectal compliance in these subjects. Among the remaining subjects, the Prhalf for rectal compliance was within normal limits, i.e., 14.4 ± 0.5 mmHg. Three experimental patients had a stiff rectum, as evidenced by a Prhalf that was above the 90th percentile value for healthy subjects in our laboratory.

During rectal staircase distension, the sensory thresholds for first sensation, desire to defecate, and constant urgency aver-
aged 11.5 ± 1.4, 15.7 ± 1.1, and 23.5 ± 1.8 mmHg, respectively; these values were within the 10–90th percentile of normal values for our laboratory. The corresponding volume thresholds were 110 ± 20, 150 ± 17, and 216 ± 19 ml, respectively. Although sensory thresholds expressed as pressure were within the normal range for all subjects, volume thresholds for the desire to defecate were above the 90th percentile value in two experimental patients.

Assessment of Axial Forces with a Sphere

Figure 2 provides representative tracings of axial forces recorded by a solid sphere during squeeze, expulsion, and a Valsalva maneuver. Axial forces directed inward (i.e., orad) and outward (i.e., caudad) were designated negative and positive, respectively. At rest (i.e., before maneuvers), the sphere recorded an inwardly oriented force at 4 and 6 cm and an outwardly oriented force at 8 cm from the verge (Fig. 3). Therefore, the resting force was influenced (P < 0.0001) by the location of the sphere in control patients and experimental patients. Moreover, the inward resting force was weaker (P = 0.01) in experimental patients compared with control patients (Fig. 3).

Both control patients and experimental patients exerted an outwardly directed force against a sphere during expulsion and a Valsalva maneuver (Figs. 3 and 5). Conversely, both control patients and experimental patients generated an inwardly directed force when they squeezed (i.e., contracted) their pelvic floor muscles. Compared with control patients, experimental patients generated a significantly (P < 0.0001) lower outward force during expulsion and a Valsalva maneuver; these differences were most pronounced at 4 cm from the verge (Fig. 5). However, the inward force during squeeze was comparable in control patients and experimental patients.

Similar to the resting force, the force change during maneuvers was also affected by the location of the sphere in control patients (P = 0.0002) but not in experimental patients. Thus, in control patients, the outward force during expulsion and a Valsalva maneuver was highest at 4 cm, intermediate at 6 cm, and lowest at 8 cm from the verge. During squeeze, the force change was higher at 4 cm compared with 6 cm and, in turn, compared with 8 cm from the verge; however, differences among locations were not significant.

Assessment of Axial Forces by a Latex Balloon

At rest, forces measured by a latex balloon were comparable to a sphere, affected (P < 0.0001) by device location (i.e., inward at 4 and 6 cm and outward at 8 cm from the verge), and of smaller magnitude in experimental patients than control patients (Fig. 4).

During voluntary maneuvers, control patients and experimental patients generated an inward force when they squeezed their pelvic floor muscles and an outward force during expulsion and a Valsalva maneuver. Both control patients and experimental patients exerted a stronger outward force during expulsion against a latex balloon compared with a sphere (Figs. 3–5). Similar to a sphere, outward forces during expulsion and a Valsalva maneuver were weaker in experimental patients compared with control patients. However, in contrast to a sphere, 1) the inward force during squeeze was also weaker in experimental patients compared with controls, and 2) the force change during maneuvers with a balloon was not significantly different across locations (i.e., at 4, 6, and 8 cm from the verge) in control patients or experimental patients.

The rectoanal pressure gradient during expulsion measured by anal manometry was correlated (r = 0.44, P = 0.04) with the axial force during expulsion of a latex balloon at 4 cm from the verge. However, the rectoanal pressure gradient was not correlated with axial forces during expulsion of a latex balloon located at 6 or 8 cm from the anal verge.

Table 1. Rectoanal pressures measured by a balloon at rest and during maneuvers in healthy subjects

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Latex Balloon Pressure</th>
<th>Controls</th>
<th>Patients</th>
<th>Controls</th>
<th>Patients</th>
<th>Controls</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 cm</td>
<td>6 cm</td>
<td>8 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting pressure (i.e., before maneuver)</td>
<td>25 (13, 36) 28 (17, 39)</td>
<td>22 (12, 34) 24 (14, 35)</td>
<td>38 (27, 50) 31 (20, 42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squeeze (during – before)</td>
<td>26 (16, 37) 11 (1, 20)</td>
<td>14 (3, 25) 8 (2, 17)</td>
<td>–5 (–16, 6) 6 (–3, 16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expulsion (during – before)</td>
<td>17 (2, 32) 29 (16, 43)</td>
<td>29 (14, 43) 37 (24, 51)</td>
<td>35 (20, 50) 39 (25, 52)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valsalva (during – before)</td>
<td>24 (12, 35) 13 (2, 24)</td>
<td>27 (16, 38) 13 (2, 24)</td>
<td>32 (20, 43) 11 (0, 0, 22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All values are means with 95% confidence interval in parentheses for pressure measured in mmHg.

AJP-Gastrointest Liver Physiol • VOL 290 • JUNE 2006 • www.ajpgi.org
ing pelvic floor contraction (8). Using a new device (REIT), we found an intrarectal device was located above the anal canal, reflecting that when subjects squeezed, they exerted an inward axial force even when rectal pressures were negative (i.e., directed inward). Similar to previous studies, we observed that when subjects squeezed (i.e., contracted) their pelvic muscles and exerted an outward force during expulsion and a Valsalva maneuver. Second, compared with control patients, experimental patients with defecatory symptoms exerted a weaker inward force when they squeezed the pelvic floor and a weaker outward force not only during expulsion but also during a Valsalva maneuver, supporting the concept of generalized pelvic floor weakness. Third, rectoanal forces were higher for a latex balloon, which provides a closer approximation to a normally formed stool than does a sphere. Last, forces were influenced by the location of the device relative to the anal verge. Thus the outward force during expulsion and a Valsalva maneuver was strongest at 4 cm from the verge, perhaps explaining why experimental patients find it easier to evacuate stool located in the lower, compared with the upper rectum.

During a Valsalva maneuver in control patients, the axial force, which reflects the net outward force, was comparable to the outward force during expulsion. The increase in the rectoanal pressure, which is a surrogate marker of the propulsive effort, increased by an average of 31 mmHg during a Valsalva maneuver. Among experimental patients, the axial force and intrarectal pressure change during a Valsalva maneuver were comparable in experimental patients with defecatory symptoms. These observations suggest that the lower outward axial force during a Valsalva maneuver in experimental patients may be explained by a weaker propulsive effort. The outward axial force during expulsion was correlated with the rectoanal pressure gradient during expulsion measured by manometry. However, in contrast to a Valsalva maneuver, the intrarectal pressure during expulsion was comparable in experimental patients and control patients, suggesting that increased outlet resistance accounted for the weaker outward force during expulsion in experimental patients. These obser-

Table 2. Relationship between axial force and pressure measured by a latex balloon during maneuvers

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>4 cm</th>
<th>6 cm</th>
<th>8 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squeeze</td>
<td>-0.71 ($-0.97, -0.51$)</td>
<td>-0.65 ($-0.96, -0.44$)</td>
<td>-0.01 ($-0.61, 0.49$)</td>
</tr>
<tr>
<td>Expulsion</td>
<td>0.62 ($0.27, 0.9$)</td>
<td>0.80 ($0.72, 0.96$)</td>
<td>0.69 ($0.52, 0.97$)</td>
</tr>
<tr>
<td>Valsalva</td>
<td>0.54 ($0.15, 0.93$)</td>
<td>0.87 ($0.83, 0.96$)</td>
<td>0.87 ($0.85, 0.98$)</td>
</tr>
</tbody>
</table>

All values are means with 95% confidence interval in parentheses for the correlation coefficient.
vations expand on the concept introduced by Rao et al. (16) that symptoms of obstructive defecation are associated with inadequate propulsive forces and/or with increased resistance to expulsion. They also reinforce the concept that impaired expulsion in obstructive defecation is not a fixed process but is strongly influenced by voluntary actions. Similar to anal manometry, forces were assessed in the decubitus position. Further studies are necessary to compare forces in the seated and decubitus positions.

In addition to a weaker outward force, the inward force during squeeze against a latex balloon was also weaker in experimental patients than in control patients. However, the inward force exerted against a sphere was not significantly different in experimental patients and control patients. These results confirm previous observations that the rectoanal axial force is influenced by the size of the intrarectal device (7). They also corroborate recent observations that pelvic floor motion during squeeze, assessed by dynamic MRI, was reduced in women with defecatory symptoms (3). Taken together, these findings (i.e., reduced axial forces during expulsion, Valsalva maneuver, and squeeze) are consistent with the hypothesis that a subset of patients with defecatory symptoms have generalized pelvic floor weakness, rather than an isolated impairment of pelvic floor relaxation during expulsion. This hypothesis needs to be substantiated by simultaneous assessments of abdominal wall activity, (e.g., by electromyogram) and axial forces during voluntary maneuvers.

The intrarectal sphere or balloon was connected to the transducers by a solid, inelastic segment, thus avoiding the drawback of an elastic connection that stretches and affects the force measured during maneuvers (10). In contrast to a previous study, the intrarectal latex balloon or sphere was fixed relative to the anal verge during assessments to avoid reflex sphincter contraction induced by movement of the device (7). However, we cannot exclude the possibility that the resting axial force was influenced by proprioceptive input resulting from an object within the anorectum. The force change during maneuvers was substantially higher with a balloon compared from an object within the anorectum. The force change during squeeze against a latex balloon was also weaker in experimental patients, consistent with the concept that some patients with defecatory symptoms have generalized abdomino-pelvic weakness, rather than an isolated impairment of pelvic floor relaxation.

ACKNOWLEDGMENTS

This study was supported in part by National Institute of Child Health and Human Development Grants R01-HD-38666 and R01-HD-41129 and by the General Clinical Research Center Grant RR-00585 in support of the Physiology Laboratory and Patient Care Cares.

REFERENCES