Enteropathogenic *E. coli*-induced barrier function alteration is not a consequence of host cell apoptosis

V. K. Viswanathan, Andrew Weflen, Athanasia Koutsouris, Jennifer L. Roxas, and Gail Hecht
Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois and Jesse Brown Chicago Veterans Affairs Medical Center, Chicago, Illinois
Submitted 20 December 2007; accepted in final form 17 March 2008

Enteropathogenic *E. coli*-induced barrier function alteration is not a consequence of host cell apoptosis. *Am J Physiol Gastrointest Liver Physiol* 294: G1165–G1170, 2008. First published March 20, 2008; doi:10.1152/ajpgi.00596.2007.—Enteropathogenic *Escherichia coli* (EPEC) is a diarrheagenic pathogen that perturbs intestinal epithelial function. Many of the alterations in the host cells are mediated by effector molecules that are secreted directly into epithelial cells by the EPEC type III secretion system. The secreted effector molecule EspF plays a key role in redistributing tight junction proteins and altering epithelial barrier function. EspF has also been shown to localize to mitochondria and trigger membrane depolarization and eventual host cell death. The relationship, if any, between EspF-induced host cell death and epithelial barrier disruption is presently not known. Site-directed mutation of leucine 16 (L16E) of EspF impairs both mitochondrial localization and consequent host cell death. Although the mutation lies within a region critical for type III secretion, EspF(L16E) is secreted efficiently from EPEC. Despite its inability to promote cell death, EspF(L16E) was not impaired for tight junction alteration or barrier disruption. Consistent with this, the pan-caspase inhibitor Q-VD-OPH, despite reducing EPEC-induced host cell death, had no effect on infection-mediated barrier function alteration. Thus EPEC alters the epithelial barrier independent of its ability to induce host cell death.

MATERIALS AND METHODS

Bacterial strains and plasmids. *WT E. coli* O127:H6 strain E2348/69 and the ΔespF derivative UMD874 have been described previously (17). ΔespF was amplified by using primers CCATGGT-\ TAATGGAATTAGTAA and YTTCGATWGYTCATAGGCAGC, and the largest (full-length) fragment was cloned into pTrcHis2-TOPO (Invitrogen, Carlsbad, CA) in-frame with the COOH-terminal Myc and His tags to generate pRPK14. Site-directed mutagenesis was performed using the Quickchange II kit (Stratagene, La Jolla, CA) to alter codon 16 (to encode glutamic acid instead of leucine) in the espF reading frame in pRPK14 to create pAW1. The mutation in UMD874 was complemented with pRPK14 (encoding WT EspF) pAW1 [encoding EspF(L16E)] to generate strains GH290 and GH406, respectively.

Western Blot analysis. EspF expression and secretion was monitored during *E. coli* growth in nutrient broth as described previously (17). Briefly, UMD874 and GH406 strains were subcultured in DMEM (described below) to midlog phase, incubated for 6 h, and Western Blot analysis was performed. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

http://www.ajpgi.org
and the bacteria were harvested by centrifugation. Bacterial pellets and TCA-precipitated supernatants were resuspended in Laemmli loading buffer and electrophoresed on a 6% SDS-polyacrylamide gel using the Protean II XL apparatus (Bio-Rad, Richmond, CA). The separated proteins were transferred to nitrocellulose membranes (TransBlot Cell Apparatus, Bio-Rad), blocked with 5% nonfat milk in Tris-buffered saline containing Tween 20 (TBST), and then incubated with antibodies to EspF (32). Following the required washes, the blots were incubated with horseradish peroxidase (HRP)-conjugated secondary antibody and subsequently developed with the enhanced chemiluminescence (ECL) Western blotting substrate for HRP (Amersham Biosciences, Piscataway, NJ).

RESULTS

EspF-L16E is not impaired for secretion. The type III secretion signal for EspF, localized to the first twenty amino acids of the protein, overlaps with the mitochondrial targeting sequence (5, 19). The site-directed alteration of L16E could, therefore, interfere with the expression and/or secretion of EspF. To evaluate this, protein extracts and TCA-precipitated supernatants of the pEspF- and pEspF(L16E)-complemented ΔespF strains, respectively, were examined by Western blot analysis. Plasmid-encoded EspF and EspF(L16E) were both expressed and secreted in an IPTG-inducible manner, and the mutant protein was secreted in amounts comparable to WT EPEC (Fig. 1). Both the plasmid-encoded proteins include COOH-terminal Myc and His tags. The additional faster migrating bands result from NH₂-terminal cleavage of EspF and have been reported earlier by Nougayrede and Donnenberg (21).

EspF(L16E) is impaired for inducing host cell apoptosis. Using site-directed mutagenesis, Nagai et al. (19) demonstrated that the 16th leucine of EspF was critical for mitochondrial localization and consequent induction of apoptosis in HeLa cells. To confirm this under the conditions of induction and expression in our Caco-2 system, epithelial cells infected with various EPEC strains were examined for apoptosis using the ethidium homodimer uptake assay. Dead cells are marked by red fluorescence since their compromised membranes are permeable to this high affinity nucleic acid stain. Relative to WT EPEC, ΔespF was significantly impaired for inducing host cell death (8.37 ± 1.43% and 4.30 ± 0.61% dead epithelial cells per field following infection with EPEC vs. ΔespF, respectively; Fig. 2, A and B) (9, 19). The ΔespF defect in cytotoxicity was complemented by plasmids encoding WT but not EspF(L16E) [11.07 ± 1.79 vs. 4.83 ± 0.72% dead host cells following infection with ΔespF complemented with plasmid-encoded WT EspF vs. EspF(L16E)]. Typically, T84 epithelial cells are relatively more resilient to the effects of EPEC, and a higher MOI (~200) of the bacteria is used for infections. As with Caco-2 cells, however, EPEC induced apoptosis of T84 cells in an EspF-dependent fashion. Plasmid-encoded EspF(L16E) failed to complement ΔespF for inducing host cell death (data not shown).

EspF-induced redistribution of occludin is not dependent on its proapoptotic activities. To explore the relationship between EspF-induced cell death and TJ disruption, Caco-2 and T84 intestinal epithelial monolayers were infected with WT, ΔespF, ΔespF/pEspF, and ΔespF/pEspF(L16E). As reported earlier, occludin is distributed in a uniform chicken-wire pattern at the

![Fig. 1. Alteration of Leucine 16 (L16E) does not impair EspF secretion. Bacterial pellets and TCA-precipitated supernatants from DMEM-grown ΔespF, ΔespF/pEspF, and ΔespF/pEspF(L16E) were separated by SDS-PAGE and immunoblotted for EspF. The COOH-terminus Myc/His-tagged EspF and EspF(L16E) are indicated by an arrowhead. The faster migrating bands represent cleaved EspF (21). IPTG, isopropylthiogalactoside.](http://ajpgi.physiology.org/)

AJP-Gastrointest Liver Physiol • VOL 294 • MAY 2008 • www.ajpgi.org
edge of epithelial cells, and these “strands” of occludin are disrupted in EPEC-infected monolayers (arrowheads in Fig. 3) (18, 29). Minimal occludin redistribution, if any, was observed following infection with \(/H9004\) espF (Fig. 3) (29). Plasmids encoding either WT EspF or EspF(L16E) efficiently complemented this \(/H9004\) espF defect, suggesting that EspF localization to the mitochondria, or subsequent host cell death, is not required for its ability to mediate TJ alterations.

EspF-induced barrier function alteration is independent of its effects on host cell death. To explore the role of EspF-dependent apoptosis in barrier disruption, Caco-2 cells grown on permeable filters were infected with WT, \(\Delta espF\), \(\Delta espF/pEspF\), and \(\Delta espF/pEspF(L16E)\). TER, a measurement of paracellular permeability, was monitored over time. As reported previously, a progressive decrease in TER, reflective of a loss in barrier function, was observed in monolayers infected with

Fig. 2. Site-directed mutagenesis of L16E inhibits proapoptotic activity of EspF. A: Caco-2 monolayers were infected with enteropathogenic Escherichia coli (E. coli) (EPEC), \(\Delta espF\), \(\Delta espF/pEspF\), or \(\Delta espF/pEspF(L16E)\) for 2 h, and the monolayers were evaluated for the presence of dead cells using the ethidium homodimer uptake method. The images are representative of >10 fields observed in 3 independent experiments. B: percent dead cells per field for the various treatments are shown. Values shown are SD ± SE derived from at least 10 independent fields [control vs. all other conditions: \(P < 0.001\); EPEC vs. \(\Delta espF/pEspF\), and \(\Delta espF\) vs. \(\Delta espF/pEspF(L16E)\); \(P > 0.1\); two-tailed \(t\)-test].

Fig. 3. EspF(L16E) is not impaired for altering occludin distribution. Caco-2 and T84 monolayers grown on coverslips were infected with EPEC, \(\Delta espF\), or \(\Delta espF/pEspF(L16E)\) for 4 h, fixed and stained for the tight junction (TJ) protein occludin. Representative images are shown. Arrowheads point to breaks in the junctional occludin “strands.”
WT EPEC but not ΔespF (17). Complementation with plasmid-encoded EspF restored the phenotype (Fig. 4) (32). Interestingly, plasmid-encoded EspF(L16E) was equally efficient at complementing this phenotype, suggesting that EspF disrupts the epithelial barrier disruption phenotype independent of its mitochondrial localization or its ability to cause host cell death. Similar observations were made using T84 epithelial monolayers (data not shown).

The pan-caspase inhibitor Q-VD-OPH curtails EPEC-induced death of intestinal epithelial cells. EPEC, in part via EspF, stimulates the activation of caspases, eventually leading to host cell death. To establish the role of caspases in infected cells, the effect of the pan-caspase inhibitor Q-VD-OPH on EPEC-induced host cell death was evaluated. T84 epithelial monolayers were incubated with 40 μM Q-VD-OPH for 1 h and then infected with EPEC with continued maintenance of the inhibitor. Values plotted are SD ± SE (n = 4) and representative of at least 3 independent experiments (P > 0.05 for ΔespF/pEspF vs. ΔespF/pEspF(L16E) for all time points).

The pan-caspase inhibitor Q-VD-OPH inhibits EPEC-induced death of intestinal epithelial cells. EPEC, in part via EspF, stimulates the activation of caspases, eventually leading to host cell death. To establish the role of caspases in infected cells, the effect of the pan-caspase inhibitor Q-VD-OPH on EPEC-induced host cell death was evaluated. T84 epithelial monolayers were incubated with 40 μM Q-VD-OPH for 1 h and then infected with EPEC with continued maintenance of the inhibitor. Although dead cells were observed in EPEC-infected T84 monolayers, they were fewer in number compared with similarly infected Caco-2 monolayers (Fig. 5, com-
pared with Fig. 2). Infection-induced host cell death was almost completely reversed in the presence of the pan-caspase inhibitor Q-VD-OPH.

Inhibition of caspases does not have an impact on EPEC-induced barrier disruption. To independently assess whether apoptosis contributes to EPEC-induced barrier function alteration, the effect of the pan-caspase inhibitor Q-VD-OPH on TER was explored. T84 monolayers were pretreated with 50 μM Q-VD-OPH for 1 h; subsequently, the monolayers were infected with EPEC for an additional 4 h in the continued presence of the inhibitor. Measurement of TER of infected T84 monolayers revealed that Q-VD-OPH did not significantly affect EPEC-induced barrier disruption (Fig. 6). Consistent with the EspF(L16E) data above, these studies exclude a causal relationship between apoptosis and epithelial barrier function alteration following EPEC infection. Similarly, Q-VD-OPH had no effect on EPEC-induced TER reduction in Caco-2 cells (data not shown).

DISCUSSION

Although several groups have explored the effect of EPEC on host cell survival, the role of apoptosis in the pathogenesis of this organism is not entirely clear. There is considerable evidence that the secreted protein EspF localizes to the mitochondria of EPEC-infected cells and promotes permeabilization of the mitochondrial membrane, release of cytochrome c, and cleavage of caspase-3, implicating a role for this protein in host cell death (19, 21). Even so, EPEC itself is a relatively weak inducer of apoptosis. This could be because EPEC stimulates the EGF receptor, NF-κB, and PKC pathways, all of which promote survival (10, 26, 27). Moreover, in a rabbit model of EPEC infection, apoptosis was unchanged or possibly less than baseline levels (14).

Since EPEC EspF is substantially responsible for infection-induced disruption of epithelial TJ s and consequent loss of barrier function, we investigated whether the effects of EspF on host cell death had a role in alteration of paracellular permeability. Two independent lines of investigation failed to demonstrate a causal link between apoptosis and TJ disruption in infected monolayers. First, a site-directed mutant of EspF impaired for causing host cell death promoted TJ disruption and altered barrier function. Second, the pan-caspase inhibitor Q-VD-OPH did not interfere with EPEC-induced barrier disruption.

These results are consistent with what is presently known about these two phenotypes in infected intestinal epithelial cells. First, EPEC-induced effects on tight junctions are observed as early as 2 h postinfection, at a point of time when very little host cell death is evident (18). Second, one of the limitations of studies demonstrating mitochondrial targeting and apoptosis related to EPEC infection is the need to utilize a high MOI to see such effects (21, 22) (data not shown). Third, it has been suggested that the EPEC mitochondria-associated protein (Map) and EspF work in concert to effect changes in TJs in a manner that is independent of Map mitochondrial targeting (11). Finally, there is some evidence that the COOH-terminal region of EspF, lacking the mitochondrial localization signals, can disrupt the epithelial barrier (25). In this context, our findings suggest that EspF features independent of its mitochondrial localization, such as the interaction of its COOH-terminal domains with N-WASP, contributes to epithelial barrier function disruption. Although our studies rule out apoptosis as a primary cause for EPEC-mediated TJ alterations, we cannot preclude the possibility that cell death may augment barrier disruption at later points of infection. Also, apoptosis may contribute to small conductive leaks, as has been observed in response to TNF-α-induced single cell apoptotic events (13).

Apoptosis-dependent barrier function alterations, however, have been observed in other systems. TNF-α-treated HT-29/B6 cells display a progressive decrease in TER, which was attenuated by the caspase inhibitor, Z-VAD-FMK (3). Caspase-dependent cleavage of occludin was considered to be at least partially responsible for this phenotype. Agonists of the G protein-coupled receptor proteinase-activated receptor (PAR1) similarly induced apoptosis and concomitantly increased epithelial permeability in a caspase-3-dependent manner in the nontumorigenic SCBN cell line, as well as in mouse colonic epithelium (7). Caspase-3 inhibitors, as well as myosin light chain kinase inhibitors, abolished PAR1-dependent TJ alterations. Some strains of the intestinal pathogen Giardia lamblia (G. lamblia) induce apoptosis, which in turn results in increased paracellular permeability (6). Pharmacological inhibition of caspase-3 blocked G. lamblia-induced barrier disruption, suggesting a causal role for epithelial apoptosis in barrier disruption. Similarly, it has been shown that single-cell apoptosis in TNF-α-treated monolayers leads to transient small conductive leaks (13). On the other hand, the pan-caspase inhibitor Z-VAD-FMK failed to block cytokine (IFN-γ and TNF-α)-mediated epithelial barrier function alteration (4), possibly suggesting the existence of compensatory mechanisms that maintain monolayer integrity.

Studies from various laboratories suggest a complex multifunctional role for EspF. Aside from its role in apoptosis and barrier disruption, EspF inhibits phosphatidylinositol-3 kinase-dependent uptake of EPEC into macrophages by a process independent of its localization to the mitochondria (25). The ability of this protein to orchestrate such diverse host cell functions and the role of these changes in causing disease remain to be understood.

NOTE ADDED IN PROOF

Since the submission of this manuscript, a study examining the effect of caspase inhibitors on EPEC-induced epithelial barrier disruption independently arrived at the same conclusions. **Flynn AN, Buret AG.** Caspases-3, -8, and -9 are required for induction of epithelial cell apoptosis by enteropathogenic E. coli but are dispensable for increased paracellular permeability. *Microb Pathog* 44: 311–319, 2008.

ACKNOWLEDGMENTS

We acknowledge the experimental support provided by Sandhya Royan.

GRANTS

These studies were supported by the American Gastroenterological Association bridging award and the University of Illinois at Chicago gastrointestinal and liver disease (GILD) council (to V. Viswanathan), grants DK-50694 and DK-58964 from the National Institutes of Health, and the Veterans Affairs Merit Review and Veterans Affairs Research Enhancement Awards Program of the Department of Veterans Affairs (to G. Hecht).
REFERENCES

