Scope of Journal
The American Journal of Physiology-Gastrointestinal and Liver Physiology reports the rapid changes taking place in gastrointestinal and liver research. Exciting new developments in the basic concepts of cell and organ function and new approaches in cell and molecular biology are reported while maintaining the traditional focus on physiology.

The journal's broad scope includes comprehensive coverage of normal and abnormal functions of the gastrointestinal tract, liver, pancreas, gallbladder, and salivary glands. Special features include subject table of contents and theme articles featuring concise, insightful perspectives.

With so many rapid changes taking place in the field, a subscription to AJP-Gastrointestinal and Liver Physiology is a must for all serious researchers in this area.

Authors are required to submit papers online at www.apscentral.org.

A Few HOT Articles

Mechanism of action of cholecystokinin octapeptide on rat antrum, pylorus, and duodenum
U. Scheurer, L. Varga, E. Drack, H. R. Burki, F. Halter

Inflammation and Cancer I. Rodent models of infectious gastrointestinal and liver cancer
Arlin B. Rogers, James G. Fox

Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation
Steven H. Itzkowitz, Xianyang Yio
Am. J. Physiol. Gastrointest. Liver Physiol. Jul 01, 2004; 287: 7-17

Hormonal Regulation of Lipolysis in Adipose Tissue
Kathy Jaworski, Eszter Sarkadi-Nagy, Robin Duncan, Maryam Ahmadian, Hei Sook Sul

TLRs in the Gut I. The role of TLRs/Nods in intestinal development and homeostasis
Ian R. Sanderson, W. Allan Walker

Reader & Author Benefits
- Fully searchable text, including PubMed
- Rich color and sharp resolution of figures
- Editor’s Home Page at www.the-aps.org/publications/ajpgi
- Access to the extensive collection of back issues available online 12 months after publication
- FREE e-mail notification of new content as it becomes available
- Manuscripts online within days of acceptance
- Perpetual/Electronic Archiving of the LOCKSS and CLOCKSS systems preserves the electronic content of all APS journals

Authors can choose to pay a fee on top of regular author fees and have their article made free immediately ($2,000 for research articles and $3,000 for review articles).
Authors: Publish your name in your native language

Authors who publish in APS journals may now present their names in non-Latin characters (in their native writing system) alongside the standard English transliteration of their name in the main author line of the published article; for example, “Ta-Ming Wang (王大明).”

We will accept any non-Latin languages that have standard Unicode characters designated for the native characters. For authors that choose this option, please only provide the native expression for the original written form of the transliterated name; that is, do not include any associated degree, rank, or title information in the native format. This feature is meant for the person’s name only, not for ancillary information regarding academic achievement or institutional affiliation.

To take advantage of this new feature, please insert the native expression of your name alongside the English transliteration in the main title page of your manuscript submission.
THE APS JOURNAL LEGACY CONTENT is an “online package” of over 100 years of historical scientific research from 13 American Physiological Society (APS) research journals. It can be purchased separately at a one-time charge for perpetual use. This Legacy Content is **FREE to APS Members** ($2,000 for nonmembers). It is a separate program from the Subscription Program in that you pay once for the perpetual access to the online content from all APS journals from 1898 to 1996-1998, depending on the journal (see chart below). This content goes back to the first issue of each of the APS journals—including the *American Journal of Physiology*, first published in 1898. This legacy content can be viewed as completely searchable scanned images of the printed pages.

Journal Title and Legacy Content Dates

<table>
<thead>
<tr>
<th>Journal Title</th>
<th>Legacy Content Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal of Neurophysiology</td>
<td>Jan 1938 - Dec 1996</td>
</tr>
<tr>
<td>American Journal of Physiology (AJP)</td>
<td>Jan 1898 - Dec 1976</td>
</tr>
<tr>
<td>AJP-Cell Physiology</td>
<td>Jan 1977 - Sept 1997</td>
</tr>
<tr>
<td>AJP-Endocrinology & Metabolism</td>
<td>Jan 1977 - Sept 1997</td>
</tr>
<tr>
<td>AJP-Gastrointestinal & Liver Physiology</td>
<td>Jan 1980 - Sept 1997</td>
</tr>
<tr>
<td>AJP-Heart & Circulatory Physiology</td>
<td>Jan 1977 - Sept 1997</td>
</tr>
<tr>
<td>AJP-Regulatory, Integrative & Comparative Physiology</td>
<td>Jan 1977 - Sept 1997</td>
</tr>
<tr>
<td>AJP-Renal Physiology</td>
<td>Jan 1977 - Sept 1997</td>
</tr>
<tr>
<td>Advances in Physiology Education</td>
<td>June 1989 - Nov 1997</td>
</tr>
<tr>
<td>Physiological Reviews</td>
<td>Jan 1921 - Dec 1997</td>
</tr>
<tr>
<td>News in Physiological Sciences</td>
<td>Jan 1986 - Jan 1998</td>
</tr>
<tr>
<td>Physiological Genomics</td>
<td>Not applicable because first published in 1996</td>
</tr>
</tbody>
</table>

PLEASE NOTE: All online content published after the end dates for the journals above is free to all 12 months after publication.

Contact us for more info:
The American Physiological Society
9650 Rockville Pike, Bethesda, MD 20814-3991 (USA)
Tel: 301-634-7180, Fax: 301-634-7418
E-mail: subscriptions@the-aps.org, Web: www.the-aps.org

Journals of The American Physiological Society are participants in the Washington DC Principles for Free Access to Science (www.dcprinciples.org)
Abbreviations

Listed below are abbreviations and their definitions. These may be used without definition in the APS Journals. See Information for Authors (www.the-aps.org/publications/journals/pub_quick.htm) for other abbreviations, symbols, and terminology.

ACh acetylcholine
ACTH adrenocorticotropic hormone
ADP (CDP, GDP, IDP, XDP, TDP) adenosine 5′-diphosphate (and similarly for cytidine, guanosine, inosine, uridine, xanthosine, thymidine)

ARMS isotope ratio mass spectrometry
JAK Janus-activated kinase
JNK c-Jun NH2-terminal kinase
JNK kinase

kB kilobase(s)

Km equilibrium constant related to Michaelis-Menten kinetics (similarly, Ka, Kb, Kd, Kp, Ks)

LDL low-density lipoprotein
LH luteinizing hormone
LH-RH luteinizing hormone-releasing hormone
LPS lipopolysaccharide
Mab monoclonal antibody

MAPK mitogen-activated protein kinase
MAPKK MAP kinase kinase (also known as MEK or MKK)
MAPKAPK MAP kinase activated protein kinase

MEM Eagle’s minimum essential medium
MES 2-(N-morpholino)ethanesulfonic acid
MKP MAP kinase phosphatase
MOPS 3-(N-morpholino)propanesulfonic acid

MPO myeloperoxidase

Mr relative molecular mass (unitless)

MRI magnetic resonance imaging

MSH melanocyte-stimulating hormone

NAD nicotinamide adenine dinucleotide
NADH reduced nicotinamide adenine dinucleotide

NADP nicotinamide adenine dinucleotide phosphate
NF-kB nuclear factor-kB

NGF nerve growth factor

NMR nuclear magnetic resonance

NSAID nonsteroidal anti-inflammatory drug

nt nucleotide(s)
PAG polyacrylamide gel electrophoresis

PAH p-aminophenolic acid

PBS phosphate-buffered saline

PCR polymerase chain reaction

PDGF platelet-derived growth factor

PET positron emission tomography

PG prostaglandin (PGE, PGF, PGF2)

PGF nerve growth factor

NMR nuclear magnetic resonance

NCST noncardiotoxic

PAGE polyacrylamide gel electrophoresis

PAH p-aminophenolic acid

PBS phosphate-buffered saline

NCST noncardiotoxic

PCR polymerase chain reaction

PDGF platelet-derived growth factor

PET positron emission tomography

PG prostaglandin (PGE, PGF, PGF2)

PGF nerve growth factor

NMR nuclear magnetic resonance

NCST noncardiotoxic

PAGE polyacrylamide gel electrophoresis

PAH p-aminophenolic acid

PBS phosphate-buffered saline

NCST noncardiotoxic

PCR polymerase chain reaction

PDGF platelet-derived growth factor

PET positron emission tomography

PG prostaglandin (PGE, PGF, PGF2)

PGF nerve growth factor

NMR nuclear magnetic resonance

NCST noncardiotoxic

PAGE polyacrylamide gel electrophoresis

PAH p-aminophenolic acid

PBS phosphate-buffered saline

NCST noncardiotoxic

PCR polymerase chain reaction

PDGF platelet-derived growth factor

PET positron emission tomography

PG prostaglandin (PGE, PGF, PGF2)

PGF nerve growth factor

NMR nuclear magnetic resonance

NCST noncardiotoxic

PAGE polyacrylamide gel electrophoresis

PAH p-aminophenolic acid

PBS phosphate-buffered saline

NCST noncardiotoxic

PCR polymerase chain reaction

PDGF platelet-derived growth factor

PET positron emission tomography

PG prostaglandin (PGE, PGF, PGF2)

PGF nerve growth factor

NMR nuclear magnetic resonance

NCST noncardiotoxic

PAGE polyacrylamide gel electrophoresis

PAH p-aminophenolic acid

PBS phosphate-buffered saline

NCST noncardiotoxic

PCR polymerase chain reaction

PDGF platelet-derived growth factor

PET positron emission tomography

PG prostaglandin (PGE, PGF, PGF2)

PGF nerve growth factor