Plasma levels of PBEF/Nampt/visfatin are decreased in patients with liver cirrhosis

Jan Freark de Boer,*1 Matthias J. Bahr,*2 Klaus H. W. Böker,2 Michael P. Manns,2 and Uwe J. F. Tietge1,2

1Center for Liver, Digestive and Metabolic Diseases, Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 2Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany

Submitted 22 January 2008; accepted in final form 28 November 2008

Plasma levels of PBEF/Nampt/visfatin are decreased in patients with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol 296: G196–G201, 2009. First published December 12, 2008; doi:10.1152/ajpgi.00029.2008.—Liver cirrhosis is a catabolic disease associated with a high incidence of insulin resistance and diabetes mellitus. Pre-B cell colony-enhancing factor/nicotinamide phosphoribosyltransferase/visfatin has been characterized as a novel adipokine with a potential role in glucose metabolism and nicotinamide dinucleotide (NAD) generation. We studied plasma levels and metabolic relevance of visfatin in 19 patients with cirrhosis and 19 body mass index-, age-, and sex-matched controls. In addition, hepatic mRNA expression was assessed by qPCR in livers of seven patients with cirrhosis and four controls. Circulating visfatin was 78% lower in cirrhotics (P < 0.001) and decreased with worsening of the clinical stage of liver disease. Hepatic visfatin secretion decreased with clinical stage (P < 0.05) and reduced liver function (P = 0.01). Consistent with these data, hepatic visfatin mRNA expression was significantly lower in cirrhotic livers (P < 0.05). Circulating visfatin in cirrhosis was correlated with body cell mass (r = 0.72, P < 0.01) as well as with body fat mass (r = 0.53, P < 0.05) but not with plasma glucose, insulin, the degree of insulin resistance, or whole body glucose oxidation rates. Higher visfatin levels were associated with higher hepatic glucose production (r = 0.53, P < 0.05) and also with a higher arterial ketone body ratio (KBR) (r = 0.48, P < 0.05), an indicator of increased hepatic NAD generation. In conclusion, circulating visfatin and hepatic visfatin mRNA expression were significantly lower in cirrhotic patients compared with matched controls. In addition, visfatin levels were correlated with whole body glucose metabolism, thereby implicating this novel adipokine in the pathogenesis of insulin resistance and diabetes mellitus.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

MATERIALS AND METHODS

Patients. We studied 19 patients with histologically proven liver cirrhosis in different clinical stages of the disease (Child A = 5, Child B = 7, Child C = 7) and attributable to different etiologies (post-
hepatic = 7, alcoholic = 6, biliary = 6). The cirrhotic patients were studied while hospitalized for evaluation before liver transplantation. Circulating visfatin values were compared with 19 controls without any liver or metabolic disease that were exactly matched to the patients regarding age, sex, and body mass index (BMI). Details are given in table 1. All subjects included were in a stable clinical condition before entering the study and had been following a weight-maintaining diet containing 80 g of protein daily for at least 1 wk. Subjects with proteinuria, suspected infections, clinically overt diabetes mellitus, thyroid dysfunction, or any other endocrine disorder were excluded from the study. No hormone, anti diabetic, or thyroid regulatory medication was administered. Patency of portal vein and hepatic artery was documented in patients and controls by Doppler ultrasound before entering the study. All patients were thoroughly informed about the rationale and the possible risks of all investigational procedures and gave written consent before entering the study. To assess hepatic visfatin expression in cirrhotic livers, samples were collected directly after explant during orthotopic liver transplantation from seven patients (posthepatic = 3, alcoholic = 1, biliary = 3). As controls, samples from healthy donor livers intended for liver transplantation but not used because of technical reasons were used. The study protocol has been approved by the Ethics Committee of the Hannover Medical School.

**Determination of hepatic hemodynamics.** After an overnight fast, an arterial line was placed for blood sampling, and hepatic vein catheterization was performed to measure the hepatic venous pressure gradient (HVPG) as a measure of portal pressure and to collect hepatic venous blood samples as described (30). Quantitative hepatic blood flow (HBF) was determined by the indocyanine green (ICG, Cardio-Green; Paesel+Lorei, Frankfurt, Germany) steady-state infusion technique according to a previously published protocol (30).

Briefly, on the day before hepatic venous catheterization, individual ICG half-life (ICG1/2), as a measure of effective HBF, was determined by ICG bolus injection (3). From these data the individual ICG infusion rate was calculated according to the formula: \[ I_{	ext{ICG}} = \ln_2/I_{	ext{ICG}1/2} \times 60, \] with \( I_{	ext{ICG}} \) representing the individual ICG infusion rate (mg/h), and ICG1/2 representing the ICG half-life (min). Patients received an intravenous loading dose of 0.3 mg ICG/kg body wt followed by a constant infusion of ICG through a forearm cannula with the infusion rate calculated according to the formula above. After steady-state conditions were achieved, hepatic plasma flow (HPF) was calculated as: \( \text{HPF} = \frac{I_{	ext{ICG}}}{ICG_{a} - ICG_{h}} \), with \( I_{	ext{ICG}} \) representing the individual ICG infusion rate (mg/min).

**Table 1. Clinical data of the patients with liver cirrhosis and controls**

<table>
<thead>
<tr>
<th></th>
<th>Cirrhosis (all)</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>47.4 ± 2.5</td>
<td>46.7 ± 1.4</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>23.0 ± 0.6</td>
<td>22.8 ± 0.6</td>
</tr>
<tr>
<td>Male/female</td>
<td>13/6</td>
<td>12/5</td>
</tr>
<tr>
<td>Bilirubin, μmol/l</td>
<td>41 ± 6</td>
<td>42 ± 9</td>
</tr>
<tr>
<td>Albumin, g/l</td>
<td>32 ± 2</td>
<td>45 ± 1</td>
</tr>
<tr>
<td>Prothrombin time, %</td>
<td>70 ± 3</td>
<td>99 ± 2</td>
</tr>
<tr>
<td>AST, U/l</td>
<td>34 ± 5</td>
<td>24 ± 1</td>
</tr>
<tr>
<td>ALT, U/l</td>
<td>31 ± 4</td>
<td>22 ± 2</td>
</tr>
<tr>
<td>γ-GT, U/l</td>
<td>80 ± 17</td>
<td>17 ± 2</td>
</tr>
<tr>
<td>Glucose, mmol/l</td>
<td>5.9 ± 0.3</td>
<td>6.3 ± 0.4</td>
</tr>
<tr>
<td>Insulin, mU/l</td>
<td>18 ± 3</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>4.67 ± 0.67</td>
<td>1.27 ± 0.16*</td>
</tr>
<tr>
<td>QUICKI</td>
<td>0.315 ± 0.006</td>
<td>0.419 ± 0.008*</td>
</tr>
</tbody>
</table>

Data are given as means ± SE. Results significantly different from cirrhosis: *p < 0.05 or less. BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HOMA-IR, homeostasis model assessment of insulin resistance; QUICKI, quantitative insulin sensitivity check index.
data. Spearman’s rank correlation coefficient was used to assess possible associations between different parameters. Stepwise regression analysis was performed to determine the association of different parameters with visfatin as the dependent variable. $P$ values $< 0.05$ were considered statistically significant.

**RESULTS**

**Circulating visfatin levels are decreased in liver cirrhosis attributable to decreased hepatic expression and secretion.** Patients with liver cirrhosis exhibited drastically reduced circulating visfatin levels compared with age-, sex-, and BMI-matched healthy control subjects ($16.0 \pm 1.8$ vs. $80.4 \pm 8.6$ ng/ml, $P < 0.001$, Fig. 1A). Patients in early clinical stages of cirrhosis had already decreased plasma visfatin levels (Child A: $23.9 \pm 3.2$ ng/ml) that were, however, significantly higher compared with Child B or Child C patients ($14.0 \pm 2.0, 12.3 \pm 2.6$ ng/ml, respectively, each $P < 0.05$ to Child A, Fig. 1A). One reason for decreased circulating visfatin with worsening of the clinical stage could be reduced hepatic production since Child A patients had significantly higher hepatic venous visfatin levels ($69.2 \pm 25.8$% increased compared with arterial, Fig. 1B) as well as per minute splanchnic visfatin production rates ($4.86 \pm 2.04$ µg/min, Fig. 1C) compared with Child B and C patients ($-5.6 \pm 9.2$ vs. $-8.6 \pm 5.4$% increased compared with arterial, respectively, each $P < 0.05$ to Child A, Fig. 1B; $0.01 \pm 0.21$ vs. $-1.17 \pm 0.81$ µg/min, respectively, each $P < 0.05$ to Child A, Fig. 1C). The different underlying etiologies of liver cirrhosis had no significant impact on plasma visfatin levels or on hepatic visfatin production. In addition, no significant differences were found comparing male and female patients.

Circulating visfatin correlated well with the half-life time of ICG, a sensitive test compound to assess liver function ($r = -0.57, P = 0.01$, Fig. 2) providing additional support for the impact of liver function on plasma visfatin levels. On the other hand, plasma visfatin levels were not associated with portal pressure as assessed by the HVPG ($r = 0.35$, not significant, ns). To further investigate the basis of decreased plasma visfatin levels in cirrhosis, hepatic visfatin expression was determined. First, we performed immunohistochemistry on healthy control livers and found substantial visfatin protein expression in hepatocytes that was reduced in livers from patients with liver cirrhosis (Fig. 3A). Given methodological difficulties to quantitate changes in expression levels with immunohistochemistry, we next used quantitative real-time PCR to determine hepatic visfatin mRNA expression. In control livers visfatin expression with C, values between 20 and 21 indicated a relatively high abundance of the visfatin transcript within liver. Interestingly, in cirrhotic livers mRNA expression of visfatin was significantly decreased ($1.00 \pm 0.07$ vs. $0.68 \pm 0.11$, $P < 0.05$, Fig. 3B), pointing toward decreased hepatic expression as the basis for the decreased hepatic production rates.

**Plasma visfatin levels correlate with parameters of body composition but not with proinflammatory cytokines or energy metabolism.** Since plasma visfatin levels have been reported to correlate with fat mass in patients without liver disease (5), we assessed a possible association of visfatin with parameters of body composition in patients with cirrhosis. Body fat mass ($r = 0.53$, $P < 0.05$, Fig. 4A) and BCM representing a reflection of muscle mass ($r = 0.72$, $P < 0.01$, Fig. 4B) were both positively correlated with plasma visfatin levels.
To assess a potential contribution of the proinflammatory state of cirrhosis to circulating visfatin levels, plasma visfatin was correlated with several proinflammatory cytokines. However, neither plasma levels of TNF-α ($r = 0.19$, $P < 0.19$, Fig. 5A) nor IL-6 ($r = 0.11$, $P < 0.11$, Fig. 5B) showed a significant association with plasma visfatin levels.

In addition, no correlations were observed between circulating visfatin levels and BMI ($r = 0.23$, $P < 0.23$), energy expenditure ($r = 0.21$, $P < 0.21$), and the total body oxidation rates of carbohydrates ($r = 0.03$, $P < 0.03$), fat ($r = 0.31$, $P < 0.31$), and protein ($r = 0.29$, $P < 0.29$) in patients with cirrhosis.

Circulating visfatin levels in cirrhosis are not related to insulin resistance but rather to hepatic glucose production. In patients with cirrhosis, circulating visfatin levels did not correlate with plasma glucose ($r = 0.33$, $P < 0.33$), insulin ($r = -0.14$, $P < -0.14$), and free fatty acids ($r = 0.03$, $P < 0.03$) or two established indices for the assessment of insulin resistance (16), quantitative insulin sensitivity check index ($r = -0.36$, $P < -0.36$) and homeostasis model assessment of insulin resistance ($r = -0.05$, $P < -0.05$).

However, circulating visfatin levels were positively correlated with hepatic glucose production ($r = 0.53$, $P < 0.05$, Fig. 5A) and with the extraction of alanine, the major gluconeogenic amino acid ($r = 0.62$, $P < 0.01$, Fig. 5B), indicating that visfatin might impact on hepatic metabolism. The correlations of plasma visfatin with hepatic glucose production and alanine extraction were both not dependent on Child class.

**Plasma visfatin levels in cirrhosis are associated with the arterial ketone body ratio.** The arterial ketone body ratio (KBR) has been established as an index reflecting the hepatic NAD+/NADH ratio (28, 35). Visfatin has been demonstrated to participate in NAD+ generation (18, 34). Interestingly, the arterial KBR in patients with cirrhosis was significantly positively correlated with circulating visfatin levels ($r = 0.48$, $P < 0.05$, Fig. 6).

To delineate the interactions between the different parameters significantly associated with plasma visfatin levels in patients with liver cirrhosis, a multiple regression analysis with a stepwise model was used. Including ICG half-life, body fat mass, BCM, and the arterial KBR, this analysis revealed that BCM and ICG half-life were independently associated with circulating visfatin levels $[\text{visfatin (ng/ml)} = 0.760 \times \text{BCM (kg)} + 0.666 \times \text{ICG half-life (min)} + 5.482, r = 0.913, P = 0.001]$. 

![Fig. 3. A: representative examples of hepatic visfatin protein expression assessed by immunohistochemistry in livers of a healthy control subject (control) and a patient with liver cirrhosis (cirrhosis). Conjugate controls using the secondary antibody only are provided for each condition. Magnification: ×200. B: hepatic visfatin mRNA expression assessed by real-time quantitative PCR in livers of healthy controls (con, $n = 4$) and patients with liver cirrhosis (cirrhosis, $n = 7$). Data are presented as means ± SE, *statistically significant difference compared with controls ($P < 0.05$).](http://ajpgi.physiology.org/)

![Fig. 4. Correlation between circulating visfatin levels and body fat mass (A) and body cell mass (B) in patients with liver cirrhosis.](http://ajpgi.physiology.org/)
DISCUSSION

The results of this study demonstrate that 1) plasma visfatin levels are dramatically decreased in patients with liver cirrhosis, presumably attributable to decreased hepatic expression and secretion, 2) visfatin in cirrhosis is associated with hepatic glucose production, and 3) visfatin in cirrhosis correlates with the arterial KBR, an index reflecting the hepatic NAD+/NADH ratio.

The patients with liver cirrhosis investigated in this study showed a dramatic reduction in circulating visfatin levels compared with age-, sex-, and BMI-matched controls. Visfatin is expressed at highest levels in liver, muscle, and bone marrow but also in adipose tissue (8, 23). Our data suggest that one contributing factor to decreased visfatin levels in cirrhosis is decreased hepatic production. After showing visfatin protein expression in hepatocytes within human liver by immunohistochemistry, we demonstrated that, on the mRNA level, hepatic visfatin expression is decreased in cirrhotic livers compared with controls. In line with these results was the finding that Child A patients had significant hepatic visfatin secretion along with higher circulating levels, whereas worsening of the clinical stage was associated with no discernable hepatic visfatin production along with even lower circulating levels. The relationship between plasma visfatin and liver function is further underscored by the negative correlation of circulating visfatin with the ICG half-life time. ICG is a sensitive test substance for liver function assessing decreased functional hepatocellular capacity as well as capillarization of the hepatic sinusoids (22, 30). However, we cannot exclude that also the contribution of extrahepatic tissues to plasma visfatin levels is lower in cirrhosis. The positive correlation of visfatin with BCM, a surrogate measure for muscle mass, and with body fat mass might indicate a decreased contribution of muscle and adipose tissue, respectively, to circulating visfatin levels. The observed correlation between plasma visfatin and fat mass is in line with some studies conducted in patients without liver disease (8), whereas others could not detect such an association (5). Weight loss, though, has been associated with a concomitant decrease in plasma visfatin levels (9, 10).

In addition, our data demonstrate for the first time that circulating visfatin levels are not correlated with insulin levels or insulin resistance in cirrhosis. Data in the literature regarding the relationship between plasma visfatin and insulin resistance in patients without liver disease are somewhat conflicting (1, 25). There are studies reporting higher visfatin levels in patients with type 2 DM (7, 8), but it has also been reported that visfatin is not linked to insulin levels or insulin resistance (2, 5, 27, 33). An interesting finding of our study is the positive correlation of plasma visfatin levels with hepatic glucose production, indicating that visfatin might have some impact on glucose metabolism. Increased hepatic glucose production occurs in classical DM and is thought to be a major contributor to hyperglycemia (4, 20). Further in vivo studies are required in experimental animals as well as humans to clarify the possible impact of visfatin on hepatic glucose metabolism, an aspect that has not been explored thus far.

Another potentially important result of our study is the positive correlation of plasma visfatin with the arterial KBR. The arterial KBR has been established as an index reflecting the hepatic NAD+/NADH ratio (28, 35), and visfatin has been demonstrated to participate in NAD+ generation (18, 19, 34). To our knowledge this is the first indication of a possible link between visfatin and NAD generation in vivo in humans. Visfatin-mediated NAD biosynthesis might connect this adipokine to metabolism via altering the activity of NAD-dependent factors (19). Among these, Sirt1, a member of the NAD-dependent Sir2 family, has been proposed as an interesting and intriguing candidate (19). Sirt1 regulates insulin secretion in pancreatic β cells (6, 13). Even more important might be the effect of Sirt1 on hepatic glucose production since it has been demonstrated that induction of Sirt1 results in increased glu-

Fig. 5. Correlation between circulating visfatin levels and hepatic glucose production (A) and hepatic alanine extraction (B) in patients with liver cirrhosis.

Fig. 6. Correlation between circulating visfatin levels and the arterial ketone body ratio as an index reflecting the hepatic NAD+/NADH ratio in patients with liver cirrhosis.

G200 PBCEF/NAMPT/VISFATIN IN CIRRHOSIS

AJP-Gastrointest Liver Physiol • VOL 296 • FEBRUARY 2009 • www.ajpgi.org
conogenesis and increased hepatic glucose output (21). Although this concept would require extensive validation including the use of experimental animal models, it is tempting to speculate that visfatin-mediated NAD generation modulates the activity of Sirt1. Such a scenario might provide an explanation for the positive correlation of visfatin and hepatic glucose production observed in our study.

In summary, we established that in liver cirrhosis circulating visfatin levels are significantly decreased, presumably attributable to decreased hepatic expression and secretion. Plasma visfatin in cirrhosis is not associated with insulin resistance but correlates with hepatic glucose production and the arteriole KBR, potentially indicating a link between the NAD-generating properties of visfatin and metabolism. However, alterations in circulating visfatin are not suitable to explain IGT and DM in patients with cirrhosis.

ACKNOWLEDGMENTS
We are indebted to Sigrd Ohlendorf for expert technical assistance.

GRANTS
This study was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 265, project C4), the Netherlands Organization for Scientific Research (VIDI Grant 917-56-358) (to U. Tietge), and GECKO (to U. Tietge).

REFERENCES