








Src, which results in phosphorylation of EGFR (2, 13, 43).
Another component of TNF signaling, p38 MAPK, has also
been shown to modulate EGFR phosphorylation and activity
(19, 63). To test whether TNF-stimulated COX-2 expression
requires Src or p38 kinase activity, we treated YAMC cells
with TNF in the presence or absence of the Src family kinase
inhibitor CGP-77675 or the p38 inhibitor SB-202190. The Src
and p38 inhibitors blocked TNF- and EGF-stimulated COX-2
expression in YAMC cells (Fig. 6, A and B). Furthermore, the

Src inhibitor also blocked TNF stimulation of COX-2 expres-
sion in ImSt cells (Fig. 6C). To confirm the involvement of Src
and p38 pathways in COX-2 induction using additional phar-
macological inhibitors, YAMC cells were pretreated with the
Src inhibitor PP2 or the p38 inhibitor SB-203580 before
stimulation with TNF or EGF. PP2 and SB-203580 blocked
COX-2 induction (Fig. 6D), showing that the results with
CGP-77675 and SB-202190 are not off-target effects of indi-
vidual inhibitors. These data indicate that Src family kinases

Fig. 4. TNF stimulation of COX-2 expression requires
EGF receptor (EGFR) kinase activity. A: YAMC cells
were treated with EGF (10 ng/ml) or TNF (100 ng/ml)
for 24 h in the presence or absence of AG-1478 (1
�M). B: representative load-response Western blot for
inhibitor studies. YAMC cells were pretreated with
AG-1478 and then treated with TNF for 24 h. Cell
lysates and percentages of the uninihibited TNF stim-
ulation cell lysate were analyzed for COX-2 protein
expression as described in Fig. 1 legend. C: load-
response densitometric analysis of COX-2 protein ex-
pression in YAMC cells. Quantified COX-2 protein
levels are expressed as percentage of unihibited TNF
stimulation. D: ImSt cells were treated with TNF
(0.1–100 ng/ml) for 60 min or with heparin-binding
EGF-like growth factor (HB-EGF, 30 ng/ml) for 5
min. Protein expression and EGFR phosphorylation in
cell lysates were determined by Western blot analysis.

Fig. 5. TNF stimulation of COX-2 expression requires
EGFR expression. A: YAMC cells were transfected with
nontargeting small interfering RNA (siNT) or EGFR small
interfering RNA (siEGFR) and then treated with TNF or
EGF for 24 h. B: representative load-response Western blot
for siRNA experiments. Cell lysates and percentages of
siNT-transfected TNF stimulation cell lysate were analyzed
for COX-2 protein expression as described in Fig. 1 legend.
C: load-response densitometric analysis of COX-2 protein
expression. Quantified COX-2 protein levels are expressed
as percentage of siNT-transfected TNF stimulation. D: ImSt
cells were transfected with siNT or siEGFR and then treated
with TNF (100 ng/ml) or EGF (10 ng/ml) for 24 h. Cell
lysates were analyzed for protein expression as described in
Fig. 1 legend. E: EGFR�/� Vec and EGFR�/� WT MCE
cells were treated with TNF or EGF for 24 h. Cell lysates
were analyzed for protein expression as described in Fig. 1
legend.
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and p38 are required for TNF- and EGF-stimulated COX-2
expression in GI cells.

To determine whether p38 regulates TNF induction of
COX-2 by transactivating EGFR, we stimulated YAMC cells
with TNF in the presence or absence of SB-20190 (Fig. 6E).
TNF stimulated noticeable levels of EGFR phosphorylation
after 15 min of treatment. EGFR phosphorylation continued to
increase to a maximum after 180 min of treatment. The p38
inhibitor reduced TNF stimulation of EGFR phosphorylation at
the observed time points and also reduced phosphorylation of
Akt, a downstream signaling target of EGFR. Thus, TNF
signaling requires p38 activation to transactivate EGFR and
stimulate COX-2 expression.

TNF-stimulated cox-2 mRNA expression requires EGFR,
Src, and p38 activity. The data from the TNF and EGF
time-course experiment suggest de novo synthesis of COX-2
protein from mRNA. To test whether the induced expression
was the result of protein synthesis, we stimulated YAMC cells
with TNF or EGF in the presence or absence of cycloheximide,
an inhibitor of protein synthesis (Fig. 7A). Cycloheximide
blocked TNF- and EGF-stimulated COX-2 protein expression,
indicating that the increase in COX-2 protein expression stim-
ulated by TNF and EGF requires de novo protein synthesis.
This suggests that the change in COX-2 protein levels is a
result of a change in COX-2 translation or cox-2 mRNA levels.

Therefore, we next sought to determine whether EGFR, Src
kinases, and p38 regulate TNF- and EGF-stimulated cox-2
mRNA levels by assessing the effect of the respective kinase
inhibitors (Fig. 7B). TNF and EGF stimulated an increase in
cox-2 mRNA levels to a similar extent. The EGFR, Src, and
p38 inhibitors blocked TNF- and EGF-stimulated cox-2. These
data indicate that EGFR, Src kinases, and p38 are required for
TNF- and EGF-stimulated cox-2 mRNA expression.

TNF-stimulated COX-2 protein expression requires EGFR
kinase activity in vivo. The experiments with cultured GI
epithelial cells indicate that EGFR kinase activity is required
for stimulation of COX-2 expression by TNF. To determine the
in vivo relevance of this TNFR-EGFR-COX-2 pathway, we
assessed induction of COX-2 protein expression in colon
epithelial cells following intraperitoneal injection of TNF in
WT mice, EGFRwa2 hypomorphic EGFR mice (38), and
EGFRwa5 antimorphic EGFR mice expressing a dominant-
negative mutation (34). We quantified TNF induction of
COX-2 expression among the WT and mutant mice in colon
epithelial cells by counting the number of cells per 100 colon
crypts that stained for both COX-2 and E-cadherin, an epithe-
lial cell marker (Fig. 8). TNF induced increased numbers of
COX-2-expressing colon epithelial cells in WT mice, consis-
tent with our findings in vitro. TNF induced a lower number of
COX-2-expressing colon epithelial cells in EGFRwa2 mice and

Fig. 6. TNF- and EGF-stimulated COX-2 ex-
pression requires Src and p38 MAPK activity,
and TNF-stimulated transaction of EGFR re-
quires p38 activity. A: YAMC cells were pre-
treated with CGP-77675 (2 �M) or SB-202190
(10 �M) for 1 h and then treated with TNF (100
ng/ml) or EGF (10 ng/ml) for 24 h. B: load-
response densitometric analysis of COX-2 pro-
tein expression. Quantified COX-2 protein levels
are expressed as percentage of unihibited TNF
stimulation. C: ImSt cells were pretreated with
AG-1478, CGP-77675, or SB-202190 and then
treated with TNF or EGF for 24 h. D: YAMC
cells were treated with TNF or EGF in the
presence or absence of PP2 (1 �M) or SB-
203580 (10 �M). COX-2 expression was deter-
mined by quantitative Western blot. *P � 0.05
vs. control. @P � 0.05 vs. TNF. #P � 0.05 vs.
EGF. E: YAMC cells were treated with TNF for
15–180 min in the absence or presence of SB-
201290. Cell lysates were analyzed for protein
expression and protein phosphorylation using
the respective antibodies as described in Fig. 1
legend.
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no increase in COX-2-expressing colon epithelial cells in
EGFRwa5 mice. Thus, EGFR kinase activity is also critical to
TNF induction of COX-2 expression in vivo.

DISCUSSION

In this study, we investigated whether TNF transactivation
of EGFR regulates the induction of COX-2 and whether
induced COX-2 expression promotes GI epithelial cell sur-
vival. We have demonstrated that TNF induction of COX-2
protein expression in colon and gastric epithelial cells occurs
through a TNFR1/EGFR-dependent pathway and that the in-
duced COX-2 protects cells from the cytotoxic effect of high
concentrations of TNF. Blocking EGFR kinase activity or
expression attenuated COX-2 induction by TNF (Figs. 4A and
5A), while TNF-induced COX-2 protein expression was res-
cued in EGFR�/� MCE cells expressing WT EGFR (Fig. 5E).
Furthermore, we confirmed that the requirement of EGFR
kinase activity for TNF induction of COX-2 exists in vivo. The
increase in COX-2 expression observed in response to TNF in
colon sections from WT (high COX-2 induction), EGFRwa2

(moderate COX-2 induction), and EGFRwa5 (no COX-2 induc-
tion) mice correlated with their respective levels of EGFR
kinase activity: WT �� EGFRwa2 � EGFRwa5 (Fig. 8) (34,
38). Despite this evidence demonstrating a role for EGFR,
there was a residual stimulation of COX-2 protein expression
by TNF, even if EGFR kinase activity or expression was
inhibited in the cultured colon epithelial cells (Figs. 4A and
5A). Additionally, steady-state EGFR knockdown with siRNA
did not affect basal COX-2 levels (Fig. 5, A and D). This
suggests that while there are EGFR-dependent mechanisms
promoting COX-2 expression and the greatest increase in

TNF-stimulated COX-2 expression is EGFR-dependent, there
is also EGFR-independent regulation.

Our findings also show that TNF and EGF stimulate COX-2
protein expression by increasing steady-state cox-2 mRNA
levels, and blocking EGFR kinase activity attenuates this
response (Fig. 7B). It is not clear how EGFR activity is
increasing cox-2 expression, but future experiments will deter-
mine whether TNF-transactivated EGFR increases cox-2 tran-
scription or regulates the stability of the mRNA through
stabilizing factors such as the embryonic lethal abnormal
vision (ELAV)-like HuR (15, 61, 65) or RNA-binding motif
(RBM3) (66). Interestingly, TNF consistently stimulated more
COX-2 protein induction than did EGF, but these ligands
stimulated comparable levels of cox-2 mRNA. Thus differ-
ences between TNF and EGF stimulation exist at cox-2 post-
transcription or translation.

A recent study from our laboratory detailing TNF transac-
tivation of EGFR concluded that the mechanism for transacti-

Fig. 8. TNF induction of COX-2 in vivo requires EGFR kinase activity.
A: representative immunofluorescence imaging of colon sections from WT,
EGFRwa2 (wa-2), and EGFRwa5 (wa-5) mice injected with PBS or TNF (104 U)
for 24 h. Blue represents 4=,6-diamidino-2-phenylindole-positive nuclei, green
represents COX-2-positive cells, and red represents E-cadherin-positive cells.
White arrows indicate cells that stained for both COX-2 and E-cadherin.
B: number of epithelial cells that stained for both COX-2 and E-cadherin.
*P � 0.05 vs. respective PBS treatment. #P � 0.05 vs. WT TNF.

Fig. 7. TNF-stimulated COX-2 induction requires de novo protein synthesis,
and induction of cox-2 mRNA expression requires EGFR, Src, and p38
activity. A: YAMC cells were pretreated with cycloheximide (CHX, 5 �g/ml)
and then treated with TNF (100 ng/ml) or EGF (10 ng/ml) for 6 h. Cell lysates
were analyzed for protein expression as described in Fig. 1 legend. B: YAMC
cells were pretreated with AG-1478, CGP-77675, or SB-202190 and then
treated with TNF or EGF for 24 h. cox-2 mRNA levels were determined by
quantitative RT-PCR analysis. ns, Nonsignificant vs. Mock. @P � 0.05 vs.
TNF. #P � 0.05 vs. EGF.
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vation in YAMC cells involved the activity of Src family
kinases (76); TNF-induced phosphorylation of the receptor
also occurs by p38 MAPK (63). We have demonstrated that
Src family kinase and p38 activities are required for TNF and
EGF stimulation of COX-2 protein (Fig. 6) and mRNA expres-
sion (Fig. 7B). We also demonstrated that p38 activity is
required for full TNF stimulation of EGFR phosphorylation
and subsequent activation of the downstream signaling mole-
cule Akt (Fig. 6E). These data suggest that p38 and Src family
kinases regulate TNF stimulation of COX-2 expression
through EGFR transactivation. It is not clear whether p38
activation is upstream or downstream of Src kinase activation.
Determining the relative position of p38 and Src may be
complicated by additional stimulation of these signaling mol-
ecules by transactivated EGFR. Nonetheless, this mechanism
of EGFR transactivation may account for a difference between
TNF and EGF downregulation of activated EGFR. In our
experiments, EGF promoted EGFR activation, followed by
downregulation (Fig. 5, A, D, and E), a well-known phenom-
enon (11, 35). In contrast, even though TNF stimulates EGFR
phosphorylation (Fig. 6E) (76), there was no noticeable down-
regulation of EGFR in response to the cytokine. It is possible
that TNF may not stimulate phosphorylation on specific EGFR
tyrosines that drive receptor internalization (24). It is also
possible that, because of differences in localization or kinetics
of phosphorylation, TNF-transactivated EGFR does not result
in the activation of proteins that are involved in the downregu-
lation of EGFR. This may have a significant impact on how
EGFR couples to downstream signaling molecules and may
stimulate cellular responses that distinguish TNF-stimulated
EGFR signaling from EGF-stimulated signaling.

There has been conflicting evidence regarding whether
TNFR1 (52) or TNFR2 (39) is responsible for TNF-induced
COX-2 expression. Our studies performed in TNFR1�/� and
TNFR2�/� MCE cells in which the respective WT TNFRs
have been reexpressed controlled for unrelated differences that
may exist between TNFR�/� MCE and WT YAMC cells.
Expression of WT TNFR1 in TNFR1�/� MCE cells restored
TNF-stimulated COX-2 expression lost in the vector control,
whereas stimulated COX-2 expression was not enhanced in
TNFR2�/� cells, relative to the vector control, by addition of
WT TNFR2 (Fig. 3, A and B). Furthermore, TNF stimulation of
COX-2 expression was lost in TNFR1�/� ImSt, but not
TNFR2�/� ImSt, cells (Fig. 3E). Thus these studies demon-
strate that TNF signals for COX-2 expression through TNFR1.
Expression of a �DD TNFR1 mutant in the TNFR1�/� cells
did not restore TNF stimulation of COX-2 expression (Fig.
3A). Therefore, TNF potentially stimulates COX-2 expression
through death domain signaling; however, the �DD mutant
used in this study contained a stop codon that resulted in a
TNFR1 that lacked not only the death domain but also the
protein sequence COOH terminus to the death domain. As a
result, it is possible that elements within this sequence contrib-
ute to signaling that promotes COX-2 expression. Interestingly,
basal COX-2 expression in TNFR2�/� cells was nearly as high
as induced COX-2 expression in WT cells, and induced COX-2
expression was also very high, but upon expression of TNFR2,
COX-2 expression was lowered (Fig. 3, D and E). This sug-
gests that TNFR2 plays a role in negatively regulating COX-2
expression.

We have shown that COX-2 expression is cytoprotective in
an environment of high TNF concentration (Fig. 1). Notably,
this same concentration of TNF (100 ng/ml) stimulates trans-
activation of EGFR in YAMC cells, and this transactivation is
required for colon epithelial cell survival in vitro and in vivo,
as described in our previous study (76). Our previous finding
(76) that Src activity is required for EGFR transactivation and
cell survival is consistent with our finding in the present study
that Src activity is also necessary for COX-2 accumulation in
response to TNF. The specific role of p38 in cell survival
following TNF exposure is likely more complicated, as this
MAPK promotes pro- and antiapoptotic signals. Our results
clearly show that p38 is required for full TNF transactivation of
EGFR and COX-2 induction; these pathways presumably rep-
resent a balancing survival signal to cell death-promoting
events downstream of p38.

The lower level of COX-2 expression induced by TNF in the
EGFRwa2 than WT mice (Fig. 8) correlates with an increase in
apoptosis in the EGFRwa2 mice in our previous work (76). The
lack of strong COX-2 induction in the EGFRwa2 mice (Fig. 8)
may contribute to the increased apoptosis. Hence, it is apparent
that COX-2 is at least one of the cell survival effectors
downstream of EGFR transactivation by TNF; however, fur-
ther experiments are needed to confirm such a role for COX-2
in vivo. The survival role of COX-2 in an environment of high
TNF concentration may explain why nonsteroidal anti-inflam-
matory drugs, including selective COX-2 inhibitors, can exac-
erbate IBD (7, 18, 31, 42, 51). For instance, administration of
selective COX-2 inhibitors to IL-10�/� mice that develop
spontaneous colitis, in which TNF levels are elevated (6) and
demonstrably critical to the progression of the colitis (56),
augmented the severity of colitis (25). More specifically, a
recent study investigating the respective roles of COX-1 and
COX-2 in the course of disease in a dextran sulfate sodium
model of colitis demonstrated that COX-2 was critical for
protection against ulceration in a later stage of disease (60).

The finding that COX-2 is a survival effector of TNF-
transactivated EGFR also has relevance to cancers of the GI
tract, since chronic inflammatory conditions provide an envi-
ronment that permits the development and progression of
cancers. For example, prolonged ulcerative colitis is a known
risk factor for the development of epithelial dysplasia and
adenocarcinoma (44, 55). Also, studies of colitis-associated
neoplasia in humans show COX-2 overexpression in neoplastic
lesions (1). Furthermore, in an animal model of colitis-associ-
ated cancer, increased mucosal EGFR phosphorylation and
COX-2 expression have been reported (21). This correlation
between EGFR phosphorylation and increased COX-2 expres-
sion in an inflammatory environment is certainly consistent
with our results, and it may define a mechanism that explains
the different outcomes of tissue toward ulceration or neoplasia.
It is possible that sites of ulceration in IBD represent compart-
ments of tissue where COX-2, which is protective, is not
adequately expressed in response to TNF as a result of a
lack/dysregulation of components of a TNFR-EGFR-COX-2
axis. In contrast, sites at which neoplasias develop may repre-
sent compartments where COX-2 is expressed in large quan-
tities as a result of adequate or overactive components of this
axis. For instance, our data suggest that tissues that lack
TNFR2 expression would be expected to have high basal and
TNF-inducible levels of COX-2 expression and, thus, more cell
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survival. Survival responses in an inflammatory environment
may permit the perpetuation of cell populations that harbor
mutations resulting from oxidative DNA damage that occurs in
IBD (53) and, thus, facilitate the accumulation of additional
mutations that could affect proliferative, migratory, or survival
responses in tumorigenesis.

In summary, the data presented in the present study provide
evidence for a previously unknown mechanism for the induction
of COX-2 by TNF through TNFR1 in colon and stomach epithe-
lial cells by a p38- and/or Src-dependent TNF transactivation of
EGFR that also upregulates COX-2 expression in vivo. Subse-
quently, this induction of COX-2 protein expression protects a
confluent monolayer of colon epithelial cells from TNF cytotox-
icity. Thus our studies specify signaling events linking inflamma-
tion to cell survival that may be critical to the progression of
carcinomas in IBD through a TNFR-EGFR-COX-2 axis.
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