The prevalence of obesity is rising worldwide, and the majority of adults in the United States and many developed countries are overweight or obese. It is estimated that 1.6 billion adults worldwide are overweight [body mass index (BMI) > 25] and 400 million are obese (BMI > 30) (1). Obesity and its comorbidities have been estimated to claim over 400,000 lives and cost over $100 billion annually in the US alone (11). Obesity is associated with higher rates of disability and all-cause mortality, and the obese have increased incidences of type 2 diabetes, cardiovascular disease, musculoskeletal disorders, sleep apnea, fatty liver disease, and certain cancers.

Conventional obesity treatments fall into three categories: behavioral treatments focused on diet and exercise, pharmacotherapy, and surgical treatments. Although many patients achieve weight loss through behavioral treatments, only a small minority succeed in maintaining their losses. Similarly, Food and Drug Administration-approved antiobesity drugs have demonstrated only short-term effectiveness, and all of the approved medications have side effects that need to be considered, such as increased blood pressure and heart rate, or nausea and gastrointestinal symptoms (2). Surgical treatments have demonstrated satisfactory long-term weight loss and have been increasingly applied in clinic; however, their application is limited to a small percentage of morbidly obese patients. There is thus a need for additional obesity treatment options that are effective in producing long-term weight loss.

Gastric electrical stimulation (GES) using implantable neurostimulators has been proposed as a safer, less invasive, and more tolerable alternative to existing bariatric surgeries. Several single-arm clinical trials (4–6, 18) found significant weight loss in GES-treated patients, but GES has yet to show efficacy in a randomized controlled trial. Most recently, a multisite, double-blind, randomized trial, conducted in 189 severely obese US patients, failed to show a significant difference in weight loss across active and sham GES treatments at 12 mo (19).

Clinical studies of GES for obesity have been confined to a narrow range of stimulus parameters, imposed in part by limitations of the available implantable stimulators. For example, neurostimulators used in nearly all prior clinical GES studies to date were limited to pulse widths below 1.0 ms, despite animal evidence suggesting that longer pulse widths are more effective in modulating gastric motility (13). Other stimulation parameters in these studies were not so much a function of device limits as arbitrary choice. Nearly all of the clinical data on GES for obesity were collected using a single pulse frequency and duty cycle setting (40 Hz, 2 s on, 3 s off), the efficacy implications of which had never been systematically explored in animals or humans. If GES is to become a useful obesity therapy, further preclinical experiments are needed to identify more effective stimulation parameters than those previously tested in humans.

The ventral medial hypothalamus (VMH) is closely related to feeding behavior and plays an important role in the mediating satiety. Bilateral VMH lesions cause hyperphagia and obesity, whereas electrical stimulation of VMH neurons has been found to have the opposite effect (7, 17). GES with appropriate parameters reliably produces gastric distension in fasted animals (24, 25, 27, 28), and this gastric tone effect is one suspected mechanism by which GES may induce satiety and reduce food intake. Sun et al. (23) verified the existence of gastric distension-responsive (GD-R) neurons in the VMH and demonstrated the activation of GD-R VMH neurons by GES in...
lean rats. This is consistent with GES-induced gastric distension having central neuronal effects that alter satiation and feeding. Before the present study, responses to the effects of gastric distension and GES on VMH neuronal activity have not been studied in an obese rat model.

This study explores the effects of varying GES parameters on neuronal activity in the VMH and on food intake and body weight in diet-induced obese (DIO) rats. The parameter range tested extends beyond that used in prior clinical studies in an attempt to identify GES settings that may prove more effective in treating obesity than those already applied in humans. Experiment 1 explores the effects of varying GES parameters on spontaneous unit discharge rates of GD-R neurons in the VMH. Beginning from a basal set of GES parameters typical of device settings in prior clinical studies, four stimulation parameters (pulse amplitude, width, frequency, and train-on time) were individually varied while holding all remaining parameters fixed. Effects on GD-R VMH neurons were recorded at each parameter value. The strongest effects on neuronal activity were generated by variations in GES pulse width, with longer pulse widths increasing both the proportion of GD-R neurons activated and the magnitude of absolute changes in discharge rates. Drawing on the results of experiment 1, experiment 2 investigates whether variations in GES pulse width produce changes in food intake and body weight that parallel the effects on VMH neuronal activity.

MATERIALS AND METHODS

Experiment 1. Effects of GES on VMH Neuronal Activity of DIO Rats

Animal use committee approval. The animal care and procedures used in experiments 1 and 2 were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) at the Oklahoma City Veterans Affairs Medical Center and carried out in accordance with IACUC guidelines.

Establishing a DIO rat model. Three-week-old male Sprague-Dawley rats weighing 45–55 g were shipped from Charles River Laboratories (Kingston, NY). Animals were singly housed in Plexiglass shoebox cages in a temperature-controlled room (22 ± 2°C) on a 12-h:12-h light/dark cycle with 24-h food and water access. The rats acclimated undisturbed in their home cages for 1 wk after arrival while continuing a lab chow diet (Lab Diet 5002; PMI Nutrition International, Brentwood, MO). The animals were then randomized into two groups: a control group (n = 10) that continued the lab chow diet and a high-fat group (n = 20) that was switched to a standardized high-fat diet (D12541, 4.73 kcal/g, 45% from fat; Research Diets, New Brunswick, NJ). After feeding for 14 wk, high-fat group rats with body weights greater than the heaviest lab chow-fed control rat were characterized as DIO (mean weight 624.4 ± 30 g, n = 12) and entered into the study sample.

Surgical procedures. The rats were anesthetized with urethane (1.4 g/kg ip), and the stomach and proximal duodenum were exposed by midline laparotomy. A small incision was made at the fundus, and the stomach was gently cleaned using a small spoon. Gastric distension was produced by air inflation of a latex balloon placed in the proximal stomach through the fundal incision and connected to a barostat device. One pair of stranded stainless steel myocardial pacing wires (Myowire 025–100; A&E Medical, Farmington, NJ) was implanted under the serosa of the lesser curve of the gastric antrum for GES delivery. After the abdominal surgery, the rat was positioned on a stereotaxic frame and the dorsal surface of the brain was exposed. Small holes were drilled in the skull to expose the cortex, and the dura was cut. A one-barrel glass microelectrode filled with 0.5 M sodium acetate and 2% pontamine sky blue (tip diameter 3–10 μm, resistance 5–15 MΩ) was advanced with a hydraulic micropositioner into the area of the VMH (2.3–2.8 mm posterior to the bregma, 0.5–1.0 mm right/left lateral to the midline, and 8.8–10.0 mm below the outer surface of the skull) (14). The open part of the brain was covered by 3% agar in saline to limit any displacement attributable to respiration or heart beat.

Experimental procedures. Once the microelectrode was advanced into the area of the VMH, extracellular action potentials were recorded via the microelectrode, amplified using a high-input impedance amplifier, and displayed on an oscilloscope. All signals were recorded on a computer for analysis. When a neuron was identified and its firing pattern had become stable, the intragastric balloon was inflated to a pressure of 20–40 mmHg for 10 s to determine whether the neuron was responsive to gastric distension. The neuron was abandoned by advancing the microelectrode if it was not responsive. A test neuron was classified as GD-R if its discharge rate was transiently increased or decreased in frequency by at least 20%, on the basis of previous studies (23, 30, 31).

For each GD-R neuron identified, spontaneous unit discharges were recorded before, during, and after 1-min applications of GES with varying parameters applied in randomly assigned orders. The stimulation duration of 1 min was found to be sufficient to solicit a significant response of VMH neurons (23). Parameters tested included different pulse amplitudes (3, 6, and 10 mA), widths (0.1, 0.3, 0.6, 2.0, and 3.0 ms), frequencies (10, 20, 40, and 100 Hz) and train-on times (0.1, 0.5, 1.0, and 2.0 s). A single parameter was varied for each test with remaining parameters fixed at base settings typical of prior clinical studies of GES for obesity: 6 mA, 0.3 ms, 40 Hz, 2 s on, 3 s off.

For each GES setting tested, a baseline recording of spontaneous unit discharges was made for at least 60 s just before GES delivery. Baseline recording periods up to 5 min were used for some neurons with highly unstable discharge rates. GES was delivered for 1 min immediately after the basal recording, and unit discharge rates were recorded during GES. When the testing setting produced any apparent change in neuronal activity, at least 5 min were allowed before further testing to ensure complete recovery to basal rates.

Data analysis. Mean unit discharges per second were computed for each baseline and GES treatment period. These means were used to compute GES-induced absolute changes in discharges per second and to classify neuronal responses into two categories of whether mean discharge rates during GES were at least 20% higher or lower than the baseline level. Absolute changes in discharge rates and the binary response indicators were analyzed using repeated-measures regressions incorporating fixed neuron effects to allow for dependence across repeated tests of the same neuron. Separate models were estimated for each GES pulse parameter varied in the testing (amplitude, width, frequency, and train-on time). Model-based t-tests were used to assess whether the absolute changes in mean discharge rates and the proportions of tested neurons responding at each parameter setting were significantly different from zero. Linear contrast F-tests were used to assess dose responses to variations in each GES parameter as evidenced by a statistically significant linear trend. Reported P values from each mixed linear model incorporate the Holm step-down Bonferroni adjustment for multiple comparisons, with adjusted P values <0.05 considered statistically significant.

Experiment 2. Effects of GES on Food Intake and Body Weight in DIO Rats

Animal preparation. Sixteen male Sprague Dawley rats of the DIO-prone phenotype originally derived by Levin et al. (9) were shipped from Charles River Laboratories at 10–11 wk of age. The rats had unlimited access to high-fat diet (D12451, 4.73 kcal/g, 45% from fat; Research Diets) from weaning. Consistent with their obesity-prone phenotype and prolonged exposure to high-fat diet, their mean

G913GES ALTERS VMH ACTIVITY AND FEEDING IN RATS

AJP-Gastrointest Liver Physiol • VOL 301 • NOVEMBER 2011 • www.ajpgi.org
body weight (512 g, range: 439–630 g) on arrival was ~175 g (~50%) greater than that of comparably aged, lab chow-fed, Charles River Sprague Dawley males. Animals were singly housed in Plexiglas shoebox cages in a temperature controlled room (22 ± 2°C) on a 12-h:12-h light/dark cycle (lights on 6:00 AM-6:00 PM) with 24-h access to food and water. The rats recovered from shipping for 7 days before implant surgery.

The rats were anesthetized with isoflurane inhalation (2–3%) by mask. A midline abdominal incision was made, and one pair of stranded stainless steel myocardial pacing wires (A&E Medical 025–100 Myowire or Medtronic 6494 Streamline) was implanted below the serosa of the lesser curve of the gastric antrum. The proximal ends of the lead wires were externalized percutaneously on the back of the neck for GES delivery.

Acclimation to restricted feeding. All 16 rats survived the implant surgery without complication and recovered undisturbed for 7 days with 24-h access to food and water. After recovery, all food was removed from their cages, and the rats began a 19-day period of acclimation to time-restricted feeding in custom-built restrainers with access to a surplus of high-fat diet pellets (Research Diets, D12451) for 2 h each day (10:00 AM-12:00 noon). The restrainer was adjustable to the rat’s body size and limited movement to maintain the connection between the percutaneous leads and the external pulse generator used for GES delivery during the experiment.

The restricted feeding schedule produced a marked decline in the sample rats’ food intake during the initial days of acclimation. Body weights, which had recovered to presurgery levels, declined by 11.5% during the first 7 days of acclimation and were stable thereafter. Because of the lack of renewed weight gain, the rats were given supplemental access to 10 g of high-fat food for 2 h daily in their home cages immediately after restrainer feedings during the last week of acclimation and throughout the experiment. The timing of this access was such that the rats were fasted for 20 h before restrainer feeding. Consumption of supplemental food was minimal, averaging 1.2 g/day, and accounting for less than 10% of daily intake. Restrainer access to a surplus of high-fat diet pellets (Research Diets, D12451) was allowed for 2 h each day (10:00 AM-12:00 noon). The restrainer was adjustable to the rat’s body size and limited movement to maintain the connection between the percutaneous leads and the external pulse generator used for GES delivery during the experiment.

Crossover experiment design. After restrainer feeding acclimation, the rats were randomized into a 4 × 4 Latin Square crossover design in which each rat received a sequence of four treatments in one of four assigned orders. Four sample rats were allocated to each treatment sequence. Treatments included active GES with three different pulse widths (0.5, 2.0, and 5.0 ms) and a sham-stimulation control. Remaining GES parameters were fixed at 6 mA, 40 Hz, 2 s on, 3 s off. The GES pulse widths tested were chosen to begin within and extend beyond the range tested in the VMH neuronal recording experiment. This experiment was performed at the completion of experiment 1. In experiment 1, we tested pulse width from 0.1 ms to 3.0 ms and found a linear correlation between the excitation rate of neurons and the pulse width with the highest rate of excitation at 3.0 ms. That is, the pulse width of 3.0 ms might not be optimal pulse width. Accordingly, in this experiment, we chose to expand the pulse width to a higher value of 5.0 ms. Because the number of pulse width values we could test was limited as a result of technical and logistical issues, the test on the pulse width of 3.0 ms was skipped. Stimulation was delivered only during the 2-h restrainer feedings using constant current pulse generators (models A365 and DS8000 with model A395D and DSL100 stimulus isolators; World Precision Instruments, Sarasota, FL) connected to the externalized leads with alligator clip wires.

The rats had access to a surplus high-fat diet pellets during feedings. Each treatment was delivered on four consecutive days and was separated from the next treatment by a 3-day washout period. The rats continued the restrainer feeding regimen without GES during washouts. Food intake was measured daily, and changes in body weight over each treatment period were calculated from body weights taken before feeding on the first day of each treatment period and on the first day of the subsequent washout.

Behavioral monitoring during GES

The rats were monitored during GES administration, and any unusual behaviors were recorded. In addition to any marked changes in routine behaviors (grooming, sleeping, sniffing, and locomotion), occurrences of any behaviors specifically linked to visceral pain in rats (flinching, writhing, squashing, and arching) were also recorded (22).

Statistical analysis. Food intake and body weight change outcomes were analyzed with repeated-measures regressions including fixed effects for treatment, time period, and animal. Results are reported as least-squares mean values for food intake and weight change by treatment and differences in these means across the active GES conditions and the sham-stimulation control. The statistical significance of differences between treatment and control were assessed with model-based t-tests. Linear contrast F-tests were used to assess dose responses of food intake and body weight to increases in GES pulse width as evidenced by a statistically significant linear trend. Reported P values incorporate the Holm step-down Bonferroni adjustment for multiple comparisons, with adjusted P < 0.05 considered statistically significant.

RESULTS

Effects of GES on GD-R VMH Neurons

All but the GES settings delivering the lowest levels of stimulation energy significantly affected the discharge rates of the identified GD-R neurons in the VMH. This was true both in terms of the share of GD-R neurons that were excited or depressed relative to pre-GES baseline levels (Table 1) and in terms of the mean absolute changes in discharge rates from pre-GES levels (Fig. 1).

Only increases in pulse amplitude and pulse width were associated with statistically significant positive linear trends in

<p>| Table 1. Response of GD-R VMH neurons to GES with different pulse frequencies, widths, amplitudes and train-on times in DIO rats |
|---------------------------------|-----------------|-------|-----------------|</p>
<table>
<thead>
<tr>
<th>GES Parameters</th>
<th>No./Total Tested</th>
<th>%</th>
<th>Linear Trend Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Hz</td>
<td>2/19</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>20 Hz</td>
<td>2/23</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>40 Hz</td>
<td>9/21</td>
<td>42.9*</td>
<td></td>
</tr>
<tr>
<td>100 Hz</td>
<td>10/24</td>
<td>41.7*</td>
<td>P = 0.0682</td>
</tr>
<tr>
<td>Pulse Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 ms</td>
<td>0/23</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.5 ms</td>
<td>9/21</td>
<td>42.9‡</td>
<td></td>
</tr>
<tr>
<td>0.6 ms</td>
<td>13/24</td>
<td>54.2‡</td>
<td></td>
</tr>
<tr>
<td>1.2 ms</td>
<td>13/20</td>
<td>65.0‡</td>
<td></td>
</tr>
<tr>
<td>3.0 ms</td>
<td>18/23</td>
<td>78.3‡</td>
<td>P < 0.0001</td>
</tr>
<tr>
<td>Pulse Amplitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 mA</td>
<td>5/23</td>
<td>21.7*</td>
<td></td>
</tr>
<tr>
<td>6 mA</td>
<td>9/21</td>
<td>42.9*</td>
<td></td>
</tr>
<tr>
<td>10 mA</td>
<td>11/23</td>
<td>47.8‡</td>
<td>P = 0.0307</td>
</tr>
<tr>
<td>Train-On Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 s</td>
<td>3/20</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>0.5 s</td>
<td>4/21</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>1.0 s</td>
<td>6/19</td>
<td>31.6‡</td>
<td></td>
</tr>
<tr>
<td>2.0 s</td>
<td>9/21</td>
<td>42.9‡</td>
<td>P = 0.0934</td>
</tr>
</tbody>
</table>

Tested neurons are defined as responsive to gastric electrical stimulation (GES) if their unit discharge rate increased or decreased by more than 20% from the baseline recording period. GES parameters other than the one being tested were fixed at 6 mA, 0.5 ms, 40 Hz, 2 s on, 3 s off. Percentages of responsive neurons that are significantly different from zero are indicated as *P < 0.01, †P < 0.001, and ‡P < 0.0001. GD-R, gastric distension-responsive; VMH, ventral medial hypothalamus; DIO, diet-induced obese.

AJP-Gastrointest Liver Physiol • VOL 301 • NOVEMBER 2011 • www.ajpgi.org
the degree of GES-induced neuronal response across the entire range of parameter values tested. Whereas higher levels of train-on time and pulse frequency both evoked significant changes in the activity of GD-R neurons, the degree of neuronal response reached a plateau within the parameter range tested. In contrast, both the proportion of neurons responding and the mean absolute changes in discharge rates increased progressively with each increase in pulse width and pulse amplitude.

The neuronal response gradient was greatest for increases in pulse width. Under the highest GES pulse width (3.0 ms), 78.3% of GD-R neurons tested altered their discharge rates by 20% or more from basal levels under GES delivery, and the mean absolute change in discharges per second was more than three times higher than that observed under the highest tested values of pulse amplitude, frequency, or train-on time.

Figure 2 contains a sample recording of neuronal activity in a GD-R neuron within and around 1-min periods of GES administration with varying pulse widths. In the case shown, activity of the GD-R neuron is unaffected by 0.1-ms pulse width GES but is inhibited by 0.6-, 1.2-, and 3.0-ms pulse widths, and the degree of inhibition during the 1-min GES treatment periods increases with increasing pulse width.

Food Intake Effects of Increasing GES Pulse Width

Mean food intake was significantly lower under the active GES treatments than under sham stimulation (Fig. 3). Consistent with a pulse width dose response, there was a clear downward trend in food intake with increasing pulse width. Compared with the off control condition, mean restrainer food intake was 9.6%, 21.0%, and 47.3% lower during the 0.5-, 2.0-, and 5.0-ms treatment periods. The observed reductions in food intake were statistically significant for all three pulse widths (P < 0.0001 for 0.5 ms; P < 0.0001 for 2.0 and 5.0 ms), as was the linear trend in food intake with pulse width (P < 0.0001).

Body Weight Effects of Increasing GES Pulse Width

Food intake suppression during active GES treatment was associated with a suppression of weight gain in a pulse-width-dependent fashion (Fig. 3). Whereas body weight increased an average of 3.2% over the 4-day GES off treatment periods, the mean gains over the 0.5- and 2.0-ms GES treatment periods amounted to only 2.5% and 1.0% of body weight, and under 5.0 ms GES the rats’ body weights actually declined by an average of 0.3%. Percentage weight change was significantly different from the off control treatment under the 2.0-ms (P < 0.05) and 5.0-ms (P < 0.001) GES treatments but not under the 0.5-ms treatment (P = 0.4811). The downward trend in percentage weight change with increasing GES pulse width was also statistically significant in the linear trend test (P < 0.001).

Behavioral Observations

Other than the reduction in food intake under GES treatment, no remarkable changes in routine behaviors (grooming,
The recent failure of a rigorous, double-blind randomized clinical trial (19) to demonstrate the efficacy of GES as an obesity treatment clearly indicates that the viability of the therapy will depend on identifying GES variants that are more effective than those tested in previous clinical studies. This effort requires investigation of the mechanisms and effects of GES with varying electrode configurations and stimulation parameters in animal models. The present study contributes to the understanding of feeding, including vagal afferent neurons at the nucleus tractus solitarius (NTS) in lean rats (16) and in the VMH in both lean (23) and DIO rats (present study). The neuronal effects elicited by expanded pulse width GES were similar to those induced by gastric distention, and more potent than those reported to induce gastric distention in rats (31) and dogs (21). The induced gastric distention has been found to correlate with GES-induced reductions in food intake in both lean canines (12) and in DIO rats (unpublished data). GES with expanded parameters has also been found to alter gastric slow waves, induce gastric dysrhythmia, and inhibit antral motility in canines (20, 21). GES with 2.0-ms pulses reduced the percentage of normal slow waves by 23% in healthy dogs and, in a recent study in our laboratory, decreased the postprandial antral motility index in healthy dogs by 34%. GES with 2.0-ms pulses was also found to significantly delay both liquid and solid gastric emptying in dogs (20).

Neuronally, in lean rats GES with pulse widths ≥2.0 ms has been reported to induce gastric distention in rats (31) and dogs (21). The induced gastric distention has been found to correlate with GES-induced reductions in food intake in both lean canines (12) and in DIO rats (unpublished data). GES with expanded parameters has also been found to alter gastric slow waves, induce gastric dysrhythmia, and inhibit antral motility in canines (20, 21). GES with 2.0-ms pulses reduced the percentage of normal slow waves by 23% in healthy dogs and, in a recent study in our laboratory, decreased the postprandial antral motility index in healthy dogs by 34%. GES with 2.0-ms pulses was also found to significantly delay both liquid and solid gastric emptying in dogs (20).

Mechanically, GES with expanded parameters has been reported to induce gastric distention in rats (31) and dogs (21). The induced gastric distention has been found to correlate with GES-induced reductions in food intake in both lean canines (12) and in DIO rats (unpublished data). GES with expanded parameters has also been found to alter gastric slow waves, induce gastric dysrhythmia, and inhibit antral motility in canines (20, 21). GES with 2.0-ms pulses reduced the percentage of normal slow waves by 23% in healthy dogs and, in a recent study in our laboratory, decreased the postprandial antral motility index in healthy dogs by 34%. GES with 2.0-ms pulses was also found to significantly delay both liquid and solid gastric emptying in dogs (20).

Hormonally, expanded pulse width GES was found to reduce expression of the orexigenic peptides orexin and ghrelin
GES ALTERS VMH ACTIVITY AND FEEDING IN RATS

in the hypothalamus of lean rats (26, 30) and to increase expression of the anorexigenic peptides oxytocin in the hypothalamus (26) and cholecystokinin in the hippocampus (10). Expanded pulse width GES was also found to reduce gastric tissue ghrelin in DIO rats (29).

Taken together with the present study, these previous studies of the mechanisms by which GES may alter feeding behavior support the potential of expanded pulse width GES to be an effective treatment for obesity. At present the main obstacle to testing the efficacy of expanded pulse width GES in humans is the lack of suitable implantable pulse generators; no presently marketed implantable neurostimulators can generate pulses with widths as high as 2.0 ms.

Both this and prior GES studies suggest that the pulse width limitations of commercial neurostimulators may be a key factor in the failure of previous versions of GES to demonstrate efficacy for obesity treatment in a randomized clinical trial. In the present study GES with 2.0-ms or 5.0-ms pulses significantly reduced body weight relative to a sham-GES control treatment in DIO rats, but treatment with 0.5-ms pulses like those used in the most recent randomized clinical trial (19) did not. A prior rodent study similarly found that 3.0-ms pulse GES was more potent in reducing food intake and body weight than 0.3-ms pulse GES (31). A number of mechanistic studies have also demonstrated the importance of expanding stimulation pulse widths to values ≥2.0 ms; GES with pulse widths of ≤0.6 ms produced only marginal increases in gastric volume (8) and had no effects on gastric slow waves (3) or emptying (unpublished data) in dogs. Neuronally, 0.3-ms GES was significantly less potent than 3.0-ms GES in activating spinal afferents at T9-T10 (15) and vagal afferents in the NTS (16) and VMH (23) in rats. Similarly, 0.3-ms GES was found to be less potent than 3.0-ms GES in altering satiety-related peptides in the rodent hypothalamus (31). One limitation of this study should be pointed out: that is, in experiment 1, the widest pulse width tested was 3 ms, and this parameter was found to be most effective among the tested parameters. In experiment 2, however, instead of using this 3-ms pulse width, we chose to use a higher pulse width of 5 ms. We would like to acknowledge that it would have been better if the 3-ms pulse width had also been tested.

In conclusion, GES with appropriate parameters alters the activity of GD-R neurons in the VMH, an established brain satiety center. Increases in GES pulse width produced the largest effect on VMH neuronal activity, and these neuronal effects are paralleled by pulse width dose-dependent reductions in food intake and body weight in DIO rats. Lengthening pulse width beyond the range of commercial implantable pulse generators may be critical to making GES an effective obesity treatment.

DISCLOSURES

This study was funded by Medtronic. Medtronic employees (Maude-Griffin, Firestone and Starkebaum) participated in the study design, analysis, and manuscript preparation. No conflicts of interest exist for any authors.

REFERENCES

G918

GES ALTERS VMH ACTIVITY AND FEEDING IN RATS

