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Fig. 3. Reduced hepatic triglyceride content and synthesis in CTRP3 Tg mice. A: representative Tg and WT mouse liver sections stained with Oil Red O. B: quantification
of hepatic triglyceride content. C: quantification of mRNA expression of gluconeogenic genes in liver, normalized against 18 S rRNA. D: quantification of mRNA
expression of representative fatty acid oxidation genes in liver, normalized against 18 S rRNA. E and F: quantitative immunoblot analysis of liver AMPK� (Thr-172)
(E) and Akt (Ser-473) (F) phosphorylation in WT and Tg mice. G: quantification of mRNA expression of enzymes involves in triglyceride synthesis. All data are reported
as comparisons between WT and Tg mice on an HFD (n � 8–10 per group). Phosphorylated protein levels were normalized to total protein levels. All data are reported
as means � SE. *P � 0.05 vs. WT.
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Low-grade chronic inflammation, reflected in elevated plasma
levels of TNF-�, is frequently associated with obesity (17).
Strikingly, we also observed a marked reduction (66%) in the
circulating levels of TNF-� in Tg mice relative to controls
(Table 1).

Reduced expression of lipid synthesis genes and hepatic
TAG levels in Tg mice. When liver sections were stained with
Oil Red O to detect the presence of neutral lipids, dramatic
differences were observed between Tg and WT mice (Fig. 3A),
clearly indicating a striking resistance of Tg mice to develop-
ing hepatic steatosis in response to HFD. Quantification of
hepatic TAG levels confirmed a 38% reduction in TAG levels
in Tg mice relative to control littermates (Fig. 3B). Expression
of hepatic glucose-6-phosphatase (G6pase), a key gluconeo-
genic enzyme, was reduced by 90% in Tg mice (Fig. 3C),
confirming our previous study based on recombinant CTRP3
protein administration (43). Expression of hepatic Ppar-�, a
major transcriptional regulator of fat oxidation genes, was not
changed between Tg and WT mice (Fig. 3D), nor were there
any differences in the expression of genes directly involved in
fat oxidation (e.g., Cpt1a, Acoxs, Acads) (Fig. 3D and data not
shown). As observed following acute CTRP3 protein admin-
istration (43), no significant differences in the phosphorylation
levels of AMPK� were detected in the liver of Tg and WT
mice (Fig. 3E). In contrast to acute recombinant protein ad-
ministration (43), when plasma CTRP3 protein was chronically
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Fig. 4. Recombinant CTRP3 treatment reduces lipid accumulation in vitro.
A: CTRP3 treatment reduces the accumulation of neutral lipids in rat H4IIE
hepatocytes treated overnight with 200 �M palmitate and CTRP3 (5 �g/ml),
as quantified by Oil Red O staining. B: CTRP3 decreases de novo lipid
synthesis in H4IIE hepatocytes, as quantified by [3H]acetate incorporation.
C: no change in lipid uptake as measured by [3H]palmitate uptake by H4IIE
hepatocytes pretreated with vehicle or CTRP3. Values are mean fold � SE.
*P � 0.05 vs. vehicle.
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A: triglyceride content was measured in plasma samples taken at 0, 1, 2, 6, and
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of triglyceride accumulation was calculated for each time frame indicated.
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elevated as in Tg mice, we observed a modest reduction in
hepatic Akt phosphorylation (Fig. 3F). Importantly, the expres-
sion levels of a number of genes involved in TAG synthesis
were substantially reduced in the liver of Tg mice relative to
control littermates (Fig. 3G).

CTRP3 reduces fatty acid synthesis and neutral lipid accu-
mulation in cultured hepatoma cells. A cell culture system was
used to confirm our in vivo findings and to demonstrate that
CTRP3 protein directly regulates lipid metabolism in liver
cells. When rat H4IIE hepatocytes were coincubated overnight
with recombinant CTRP3 protein and 200 �M oleic acid
conjugated to BSA to promote lipid loading, the amount of
neutral lipids (mainly TAGs) accumulated in cells was signif-
icantly reduced (�20%) compared with vehicle-treated con-
trols (Fig. 4A). Whereas the uptake of exogenous fatty acids
was not affected by CTRP3 protein treatment (Fig. 4C), de
novo fatty acid synthesis, as measured by radiolabeled acetate
incorporation, was suppressed (�22%) in H4IIE cells treated
with CTRP3 protein (Fig. 4B).

Measurement of VLDL-TAG export in Tg and WT mice. To
assess the rate and magnitude of VLDL-TAG secretion from
the liver, a separate cohort of HFD-fed mice was injected with
poloxamer 407, an inhibitor of lipoprotein lipase that blocks
VLDL-TAG hydrolysis and clearance (35). Tg mice given
poloxamer 407 had a significantly reduced TAG accumulation
in the blood (Fig. 5A) and a reduced rate of TAG secretion
from the liver (Fig. 5B). Since TAGs are mainly secreted from
the liver as VLDL particles, these results suggest that the
reduction in hepatic TAG accumulation in Tg mice is indeed
due to the suppression of TAG synthesis (Fig. 3) and not
caused by increased hepatic VLDL-TAG export.

Short-term administration of recombinant CTRP3. Next, we
conducted a short-term recombinant protein supplementa-
tion study to further ensure that the remarkable phenotype
we observed in the liver of Tg mice is directly attributable
to elevated plasma CTRP3 levels and not due to potential
secondary effects of transgene overexpression. To address
this issue, a separate cohort of WT mice was placed on an
HFD for 12 wk to induce obesity and the development of
fatty liver. DIO mice have similar starting body weights to
one another and were given a daily injection of vehicle or
recombinant CTRP3 protein (2 �g/g body wt) for 5 consec-
utive days as outlined (Fig. 6A). Both vehicle- and CTRP3-
treated DIO mice lost �2 g of body weight during the
course of the experiment (Fig. 6B). Consistent with our
previous findings, in which a single dose of CTRP3 injec-
tion acutely reduces blood glucose levels (43), DIO mice
that received a 5-day injection also had a 22% reduction in
blood glucose levels (Fig. 6C). Strikingly, recombinant
protein administration over 5 days resulted in a 43% reduc-
tion in hepatic TAGs (vehicle, 155.2 � 19.4 mg/g vs.
CTRP3, 88.6 � 6.3 mg/g). Serum levels of TAGs and
ketones were not different between the two groups of DIO

mice (Fig. 6, E and F). Serum ketone levels reflect the extent
of hepatic fat oxidation; thus unchanged ketone levels pro-
vide further support that hepatic fat oxidation may not be
responsible for the reduction of TAG content in the liver of
mice injected with recombinant protein. As with the Tg
mice, reduced hepatic TAG in CTRP3-injected DIO mice
was due to major reduction in the expression of most hepatic
enzyme genes involved in TAG synthesis (Fig. 6G).

DISCUSSION

In the present study, we provided multiple lines of evi-
dence to establish the role of CTRP3 in regulating hepatic
lipid metabolism. Tg mice with elevated plasma levels of
CTRP3 are strikingly resistant to the development of HFD-
induced hepatic steatosis, independent of other metabolic
parameters such as food intake, body weight, adiposity, and
energy expenditure. Three possible mechanisms involving
production and/or removal of TAG could account for the
marked reduction in liver TAG content in Tg mice on an
HFD: 1) increased hepatic fat oxidation; 2) increased TAG
export from liver in the form of VLDL-TAG particles;
3) decreased synthesis of TAG in liver. Our in vivo and in
vitro data suggest that CTRP3-mediated suppression of
TAG synthesis is primarily responsible for reduced hepatic
TAG content seen in Tg mice.

In liver, TAG is synthesizes via the glycerol phosphate
pathway (4) through sequential acylation of glycerol-3
phosphate, lysophosphatidic acid, and diacylglycerol by
multiple isoforms of GPAT, AGPAT, and DGAT enzymes
(51, 66). We show that the expression of these enzymes in
liver is significantly suppressed in HFD-fed CTRP3 Tg and
wild-type DIO mice administered recombinant CTRP3, thus
contributing to reduced hepatic lipid content seen in these
animals relative to controls. Remarkably, daily supplemen-
tation of recombinant protein for 5 days is sufficient to
markedly reduce hepatic TAG levels in wild-type DIO mice,
confirming that the improved liver phenotype in Tg mice is
due to elevated plasma CTRP3 levels and not a consequence
of secondary effects of transgene overexpression. We also
noted that serum adiponectin levels were not different be-
tween Tg and WT mice, indicating that decreased hepatic
TAG content is unlikely due to adiponectin, an adipokine
known to alleviate diet-induced hepatic steatosis in mice
(64, 65). Adiponectin alleviates hepatic steatosis largely
through increasing liver fat oxidation (64); expression of
TAG synthesis genes (Gpat, Agpat, and Dgat) were not
examined. In contrast, CTRP3 ameliorates fatty liver by
reducing hepatic triglyceride synthesis. We cannot com-
pletely rule out the possibility that enhanced hepatic fat
oxidation may also play a role, as indicated by the lower
RER in Tg mice. Even a modest increase in fat oxidation,

Fig. 6. Short-term administration of recombinant CTRP3 reduces hepatic triglyceride levels in diet-induced obese (DIO) mice. A: time line depicting the daily
injection study. After 12 wk on a high-fat diet, wild-type DIO mice were fasted for 8 h before initial blood draw. After 72-h recovery from the initial fast
(considered day 0), body weight of DIO mice was determined. CTRP3 (2 �g/g body wt) or vehicle injection was given every 24 h for the next 5 days. After
the 5th injection, food was immediately removed, and after an 8-h fast animals were euthanized and liver tissues and sera were harvested. B: daily body weight
of vehicle- and CTRP3-injected DIO mice. C: pre- and posttreatment fasting (8 h) blood glucose levels. D: hepatic triglyceride contents in vehicle- and
CTRP3-injected DIO mice. E and F: serum triglyceride (E) and ketone (F) levels in vehicle- and CTRP3-injected DIO mice.
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over time, could potentially result in reduced hepatic TAG
content.

We observed a very modest improvement in insulin sen-
sitivity, as judged by insulin but not glucose tolerance test,
in HFD-fed CTRP3 Tg mice. This is likely due to improved
insulin action in the liver but not skeletal muscle (43).
Consistent with this, we did not observe any changes in Akt
phosphorylation in the skeletal muscle of Tg mice or WT
mice injected with recombinant CTRP3 protein (data not
shown). Although the potential function of CTRP3 in skeletal
muscle remains unclear, a cardioprotective function of CTRP3
was recently demonstrated in an animal model of myocardiac
infarction (67), indicating that CTRP3 plays an important role in
the heart.

Excessive fat deposition in hepatocytes, a hallmark of
steatosis, is frequently associated with hepatic insulin resis-
tance (25, 26, 46, 49). Whether hepatic steatosis causes or is
a consequence of insulin resistance is a hotly debated issue
(10, 13, 39, 46). Two recent studies using transgenic over-
expression of diacylglycerol O-acyltransferase 2 (DGAT2)
in mouse liver to alter hepatic lipid content have yielded
contradictory results on hepatic insulin sensitivity (21, 37).
Also, several other mouse models, with reduced fatty acid syn-
thesis (8), mobilization (5a, 18, 36, 63), or oxidation (38), devel-
oped hepatic steatosis without accompanying insulin resistance.
Given the very modest improvements in insulin sensitivity seen in
the HFD-fed CTRP3 Tg mice compared with littermate controls,
it is unclear whether this modest phenotype is due to reduced
hepatic lipid content. The mechanistic link between hepatic ste-
atosis and insulin resistance remains to be fully established (39)
and is not the focus of present study. Rather, we aim here to
establish the role of CTRP3 in regulating lipid metabolism.

We have previously shown that a single injection of
recombinant CTRP3 acutely lowered blood glucose levels in
WT and genetically obese (ob/ob) mice (43). The CTRP3-
mediated suppression of hepatic gluconeogenesis is corre-
lated with the activation of protein kinase B/Akt. In contrast,
chronic overexpression of CTRP3 in Tg mice resulted in
decreased Akt activation with no change in Pepck expres-
sion despite a marked suppression of G6Pase expression
(Fig. 3, C and F). These results suggest that CTRP3 can
inhibit hepatic G6Pase expression independent of Akt sig-
naling whereas the suppression of Pepck expression is likely
Akt dependent (29). Although chronic overexpression of
CTRP3 in Tg mice did not lower fasting blood glucose
levels (Table 1), short-term administration of recombinant
CTRP3 (one injection per day for 5 days) significantly
reduced fasting blood glucose levels in DIO mice (Fig. 6C).
The glucose-lowering effect seen in DIO mice is similar to
WT and ob/ob mice acutely injected with recombinant
CTRP3 (43). Because blood glucose levels are tightly reg-
ulated, chronic overexpression of CTRP3 in Tg mice may
result in homeostatic compensation to prevent hypoglyce-
mia induced by CTRP3. This may account for the lack of
differences in fasting blood glucose levels between WT and
Tg mice.

Tg mice fed an HFD have reduced hepatic TAG content
compared with WT mice. However, no differences were
observed in serum TAG levels between the two groups. The
blood chemistry analysis (Table 1) was conducted on sera
harvested from overnight-fasted mice. In contrast to the fed

state, in which TAG are secreted from liver in the form of
VLDL, in the fasted state free fatty acids derived from
adipose triglycerides were shunted to the liver to fuel
gluconeogenesis and ketones production. Under the fasted
state, we did not observe any difference in the steady-state
levels of serum TAG between WT and Tg mice.

Interestingly, we observed a decrease in the circulating
levels of TNF-� in Tg mice, likely reflecting a dampening of
chronic low-grade systemic inflammation associated with
high-fat feeding (15, 17). Our in vivo observation is con-
sistent with a previous study demonstrating the ability of
recombinant CTRP3 protein to inhibit TNF-� release from
primary human macrophages isolated from healthy donors
(24). Mice lacking TNF-� or its receptors are protected from
obesity-induced insulin resistance (53). Therefore, lower
serum levels of TNF-� seen in CTRP3 Tg mice may
contribute to the modest improvement in systemic insulin
sensitivity.

A reversal or improvement in hepatic steatosis is possible
through lifestyle modifications such as reduced energy in-
take and/or weight loss (41), as well as gastric bypass
surgery (31). However, lifestyle changes are often difficult
to sustain, necessitating alternative treatment options. One
way to reduce liver TAG content is by decreasing TAG
synthesis. Previous proof-of-principle studies using siRNA
targeting DGAT2 or small molecule inhibitor of GPAT or
DGAT1 have demonstrated the feasibility of attenuating
hepatic steatosis in rodent (7, 9, 27). In the present study, we
show that increasing plasma CTRP3 levels can significantly
suppress TAG synthesis through downregulation of TAG
synthesis genes (i.e., Agpat, Gpat, and Dgat), thereby im-
proving the fatty liver phenotype in mice without affecting
food intake and body weight. This highlights the potential
therapeutic value of recombinant CTRP3 protein supple-
mentation in mitigating NAFLD in humans. Given that
siRNA or small molecule inhibitor of enzyme often has
unintended off-target effects (12, 14, 20), the use of recom-
binant protein therapy to treat obesity-linked fatty liver may
prove to be advantageous.

In sum, we provide novel insights into the metabolic
function of CTRP3 and reveal, for the first time, its protec-
tive function in liver in response to excess caloric intake.
Our data suggest the utility of recombinant CTRP3 as a
potential protein therapeutic for treating obesity-associated
fatty liver disease.
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