Cannabinoid Receptor 1 Gene and Irritable Bowel Syndrome:
Phenotype and Quantitative Traits

Michael Camilleri
Gururaj J. Kolar
Maria I. Vazquez-Roque*
Paula Carlson
Duane D. Burton
Alan R. Zinsmeister‡

From
Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and
‡ Division of Biomedical Statistics and Informatics, Department of Health Sciences Research,
Mayo Clinic, Rochester, MN
and
* Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL

Running head: Genetic CB1 variation and IBS

Word count: 3640 words (does not include abstract, references, tables)

Abbreviations: AAT: triplet of bases adenine (A) and thymine (T); CB1: cannabinoid 1 receptor; CNR1: gene for cannabinoid 1 receptor; GC=geometric center

Address for correspondence: Michael Camilleri, M.D.
Mayo Clinic
200 First St. S.W.
Charlton 8-110
Rochester, MN 55905
e-mail: camilleri.michael@mayo.edu
tele: 507-266-2305

Copyright © 2013 by the American Physiological Society.
ABSTRACT (250 words)

Genetic variations in metabolism of endocannabinoids and in CNR1 (gene for cannabinoid 1 receptor) are associated with symptom phenotype, colonic transit, and left colon motility in irritable bowel syndrome (IBS). Our aim was to evaluate associations between two variations in CNR1 genotype (rs806378 and [AAT]n triplets) with symptom phenotype, small bowel and colonic transit, and rectal sensations in 455 patients with IBS and 228 healthy controls. Small bowel and colonic transit were measured by scintigraphy; rectal sensation by isobaric distensions. Associations with genotype were assessed by χ^2 test (symptom phenotype) and ANCOVA (quantitative traits) based on a dominant genetic model. Significant association of CNR1 rs806378 (but not CNR1 [AAT]n) genotype and symptom phenotype was observed (χ^2 $p=0.028$). There was significant association of CNR1 rs806378 ($p=0.014$; CC vs CT/TT) with colonic transit in IBS-diarrhea (IBS-D) group; the TT group had fastest colonic transit at 24 and 48h. There was significant overall association of CNR1 rs806378 with sensation rating of gas ($p=0.025$), but not pain; strongest associations for gas ratings were in IBS-D ($p=0.002$) and IBS-alternating ($p=0.025$) subgroups. For CNR1 (AAT)n, gene by phenotype interactions were observed for colonic transit at 24 ($p=0.06$) and 48h ($p=0.002$) and gas ($p=0.046$, highest for IBS-D, $p=0.034$), but not pain sensation; the strongest association with transit was in controls, not in IBS. These data support the hypothesis that cannabinoid receptors may play a role in control of colonic transit and sensation in humans and deserve further study as potential mediators or therapeutic targets in lower FGID.

Key words: colon, transit, sensation, genetics, variation
INTRODUCTION

Endocannabinoids are lipids that can act on two different 7-transmembrane receptors that are members of the superfamily of G protein-coupled receptors, CB1 and CB2 (18). The ligands of these receptors are anandamide and 2-arachidonyl glycerol (2-AG), and their respective ligand-inactivating enzymes are fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGLL) (10,16,23). CB1-receptor immunoreactivity is present in normal colonic epithelium, smooth muscle, and the submucosal myenteric plexus, and in plasma cells that influence mucosal inflammation (19,29). There is evidence of a direct role for endocannabinoids in the modulation of motor activity in the human colon. Activation of CB1 receptors coupled to cholinergic motor neurons inhibits excitatory nerve transmission in human colonic circular muscle (13). CB2 receptors are predominantly located on immune cells and in brain areas implicated in emesis (15).

Endocannabinoid modulation with pharmacological agents can alter colonic motor function. Esfandyari et al. have shown that a nonselective CB receptor agonist, dronabinol (DRO), inhibits gastric emptying and colonic motility in humans (11,12).

The potential role of cannabinoid mechanisms in the pathophysiology of functional gastrointestinal disorders is supported by prior studies that explored associations of genetic variation in metabolism or receptors of endocannabinoids and gastrointestinal motor functions in humans.

Genetic variations in endocannabinoid metabolism are associated with alterations in colonic transit in diarrhea-predominant irritable bowel syndrome (IBS-D). We previously showed that C385A variation in the gene of the FAAH is significantly associated with IBS, particularly in patients with mixed or alternating bowel movements (IBS-A) or IBS-D (4).
Moreover, there was a borderline association with chronic abdominal pain and a significant association with the quantitative trait, colonic transit at 24 hours, in patients with IBS-D.

Genetic variation of \textit{CNR1} (gene for cannabinoid 1 receptor) has shown that \textit{CNR1} rs806378 (CC vs CT/TT) has a potential effect on fasting proximal left colonic motility in IBS-D and IBS-A patients (27). In addition, the nonselective cannabinoid agonist, dronabinol, preferentially delayed colonic transit in IBS patients with the \textit{CNR1} rs806378 CT/TT genotypes (28). Alternative splicing is known to occur at CNR1, and five transcripts have been identified (31). The two most common variants are present in either exon 3 (5′untranslated region) of the alternate transcript (CB1-E) or in intron 1 of the transcript (CB1-A). The functional significance of the T allele of \textit{CNR1} polymorphism rs806378 was demonstrated through alteration of nuclear protein binding in an electrophoretic mobility shift assay (24). The potential associations with gastrointestinal motor functions were also demonstrated by Vazquez-Roque et al. (25) who reported that rs806378 CC genotype was associated with reduced fasting gastric volume, and a nonsignificant association with gastric emptying of solids, compared to the CT/TT group.

The gene that codes for the \textit{CNR1} contains a polymorphic (AAT)n triplet (14); a higher number of AAT triplets may induce a Z-shape conformation in the DNA (21), thereby altering gene transcription. The expression of this gene can be inversely proportional to the number of repeats (6). A Korean group found an association between genetic variants of AAT repeats located in the 3′-flanking region of the \textit{CNR1} gene and IBS (17). The >10/>10 AAT triplet repeats occurred with greater frequency in IBS patients than in healthy controls, though the allele frequencies and the \textit{CNR1} genotypes did not differ between the IBS subtypes based on bowel function; there was significant association with higher abdominal discomfort or pain in patients with the CNR1 >10/ >10 genotype.
Our hypothesis is that genetic variation in \textit{CNR1} at the rs806378 locus and higher numbers of AAT triplet repeats in \textit{CNR1} are associated with IBS, as compared to healthy controls from the Midwest USA, and that these genetic variants are associated with small bowel and colonic transit or sensation ratings of gas and pain following isobaric pressure-based rectal distensions.

Our overall aim was to evaluate associations between variations in the \textit{CNR1} genotype, that is rs806378 and (AAT\textsubscript{n} triplets, with symptom phenotype, small bowel and colonic transit, and rectal sensations in previously identified patients with functional gastrointestinal disorders who reside in Midwest USA. The significance of such associations with phenotype and quantitative traits is that they support a potential role of cannabinoid mechanisms in the pathophysiology of functional gastrointestinal disorders.

\textbf{METHODS}

\textbf{Study Design}

We had a total of 683 subjects (455 patients and 228 healthy controls) with prior research authorization to use their genetic material for analysis. The analysis of the genetic material was investigated with prior collected information regarding IBS phenotype, small bowel and colonic transit, and sensation ratings in response to isobaric rectal distensions in patients with IBS and lower functional gastrointestinal disorders (FGID).

\textbf{Participants}

Participants who were eligible for evaluation of the association between symptom phenotypes and genotypes have been extensively described in previous publications (5). All participants were recruited in studies of symptom phenotype and genotype from 2000 to 2012. All participants resided within 150 miles of Rochester, Minnesota. Participants had been
recruited for the original studies by means of letters or public advertisements and had signed informed consent for the respective studies; and all patients fulfilled Rome II criteria for IBS phenotypes. The study was approved by the Mayo Clinic Institutional Review Board and all participants had provided written permission for research studies based on their medical records and DNA samples. Experienced coordinators used the validated Bowel Disease Symptom Questionnaire, electronic medical record, and information from direct physician interview and examination (MC) to characterize the subtype of lower FGID.

Small Bowel and Colonic Transit by Scintigraphy

We used an adaptation of our established scintigraphic method to measure small bowel and colonic transit in our subjects, which has been extensively validated (8,9). Transit measurements were performed after an overnight fast. In summary, indium-111 (111In) adsorbed on activated charcoal particles was delivered to the colon via a methacrylate-coated, delayed-release capsule which was administered by the oral route. Following emptying of the capsule from the stomach, its position was documented relative to radioisotopic markers placed on the anterior iliac crests. After this, a breakfast meal of two scrambled eggs radiolabeled with technetium-99m (99mTc) along with one slice of whole wheat bread and one glass of whole milk (300 kcal total) was ingested. This meal enabled the measurement of the small bowel transit. Standardized meals for lunch and dinner at 4 and 8 hours, respectively, were ingested by the subjects after the radiolabeled breakfast meal. Abdominal scans were obtained every hour for the first 6 hours for colonic filling at 6 hour time point, and at 8, 24, and 48 hours after ingestion of the capsule containing the 111In-charcoal. The performance characteristics of this test have been summarized elsewhere (8,9).
Transit Data Analysis

A variable region of interest program was used to quantitate the counts in the stomach and each of four colonic regions: ascending, transverse, descending, and combined sigmoid and rectum. These counts were corrected for isotope decay, tissue attenuation, and downscatter of 111In counts in the 99mTc window. The overall colonic transit was summarized as the colonic geometric center (GC) at specified times. The GC is the weighted average of counts in the different colonic regions [ascending (AC), transverse (TC), descending (DC), rectosigmoid (RS), and stool, respectively 1 to 5]. Thus, at any time, the proportion of counts in each colonic region is multiplied by its weighting factor as follows:

$$\frac{(%AC \times 1 + %TC \times 2 + %DC \times 3 + %RS \times 4 + % \text{stool} \times 5)}{100} = \text{geometric center}$$

Hence, higher GC represents a faster colonic transit. The primary transit endpoints were the colonic filling at 6 hours and colonic geometric center at 24 hours (GC24). A secondary endpoint was colonic transit at 48 hours (GC48). A total of 190 of the 683 participants had transit data.

Rectal Sensation by Isobaric Barostat-Based Balloon Distensions

For this analysis, we incorporated information recorded in prior studies of rectal sensation performed at baseline (pre-treatment) in 102 participants (of the 683) who subsequently received clonidine treatment to investigate the associations of adrenergic and serotonergic mechanisms and effects of alpha-2 adrenergic modulation of gastrointestinal and rectal functions, as published elsewhere (2,3).
The method and performance characteristics have been extensively described elsewhere (1,7). The focus of the current study was on sensation ratings. Bowel preparation (Fleet® phosphate enema) was self-administered at least 1 hour before reporting to the Clinical Research Center after an overnight fast. Random order phasic distensions above baseline operating pressure were used to assess sensory ratings, as in prior studies (1,26). Phasic distensions of 12, 24, 30 and 36 mmHg above baseline operating pressure were each applied once in random order; each distension was maintained for 60 seconds with an inter-stimulus interval of 2 minutes, during which the balloon was deflated to the baseline operating pressure. Thirty seconds after onset of the distension, subjects marked four separate 100 mm visual analog scales (VAS, anchored at each end by the descriptions ‘unnoticeable’ and ‘unbearable’) for the sensations of gas, urgency, discomfort and pain. For the purpose of the analysis of the sensations of gas and pain and in order to avoid multiple comparisons and multiple endpoints, the primary endpoints for analysis were the sensation ratings of gas and pain at the 36 mmHg (above baseline operating pressure) isobaric distensions.

Genotyping

Genomic DNA was isolated from blood using standard methods. Genotyping of *CNR1* rs806378 was performed with TaqMan® SNP Genotyping Assays (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions using 10–20 ng of genomic DNA for each sample. Primers and probes were from Assay-by Design (Applied Biosystems). Following polymerase chain reaction (PCR) amplification, end reactions were read on the 7900 Real-Time PCR System using Sequence Detection Software (Applied Biosystems).
While there are variations in the number of AAT triplet repeats in different races, we chose the 10 repeats as the cut-off in order to attempt to replicate the study of Park et al. (17); in addition, (AAT)10 and (AAT)14 are the most common allele types in European Americans (22), who constituted the vast majority of participants in our study. To determine the number of (AAT)n triplet repeats, DNA samples were amplified with LA Taq® with GC buffers (TaKaRa Shuzo Co., Ltd, Japan) using the following primers:

5’VIC-CATGCAGCACACCAACATGGCA- 3’ and 5’-TGTGTCACAAATGCTGCTTCTGTA-3’ (17). VIC is a fluorescent dye labeled to one of the primers (17) and it was also used in the design of the primers for this assay (Applied Biosystems). An aliquot of PCR product was mixed with Hi-Di™ formamide and GeneScan-500ROX size standard (Applied Biosystems) and run on an ABI PRISM 3730 Genetic Analyzer (Applied Biosystems) at the Mayo Clinic Sequencing Core. Allele sizes were determined using GENESCAN software version 2.1 (Applied Biosystems) and typed by comparing them with the allelic ladder using GENOTYPER software version 2.1. Hardy–Weinberg Equilibrium (HWE) calculations were performed to verify that each marker was within allelic equilibrium in controls.

STATISTICAL ANALYSIS

Previously collected data in subjects meeting criteria for IBS and healthy non-IBS subjects were compiled for all identified subjects with general research authorization for use of their medical records. The associations of (AAT)n triplet repeats and rs806378 of CNR1 with symptom phenotype were assessed using the chi-square test (general genetic coding). The associations of (AAT)n triplet repeats of CNR1 and rs806378 with small bowel and colonic transit were assessed using analysis of covariance (ANCOVA) models adjusting for symptom phenotype. A dominant genetic model coding was used in the ANCOVA models, i.e. both alleles with >10 repeats vs. 1 or 2 with ≤10 repeats, and for rs806378, CC vs. CT/TT. These
models also included a symptom phenotype by genotype “interaction” term (i.e. cross-product term) to examine whether the associations with genotype differed by symptom phenotype.

The reported p-values are unadjusted in deference to the hypothesis-generating aim of the analyses. An adjusted alpha level can be specified by considering that the associations of two genes were tested for each of 4 physiologic types of response [i.e. symptom phenotype, and 3 quantitative traits (small bowel transit, CF6 %; colonic transit, GC at 24h and 48h; and VAS sensation ratings, gas and pain at 36 mmHg)]. Thus, for symptom phenotype and small bowel transit, \(\alpha = 0.025 \) would be an adjusted alpha level; for colonic transit and sensation ratings, \(\alpha = 0.0125 \) would be an adjusted alpha level. All analyses employed SAS® software (version 9.3).

While the distension studies were conducted at 4 levels of distension, the analysis conducted here pre-specified that the primary endpoints of interest (presumably reflecting the worst sensations) were the ratings observed with 36 mmHg distension. This strategy was also chosen to avoid multiple comparisons in the sensation domain, which would require further corrections for multiple comparisons.

RESULTS

Genetic Analysis

The genetic variations studied were in Hardy–Weinberg equilibrium, and did not differ significantly from the frequency in Caucasian controls’ minor allele frequency reported in the literature: rs806378, \(p = 0.188 \); (AAT)n, \(p = 0.661 \). The two genetic variants studied are not in linkage disequilibrium (D' score 0.447). The races of the participants were 1 American Indian, 4 Asian, 612 white and 66 unreported.

Association of CNR1 Genetic Variation and IBS Symptom Phenotype
This analysis was based on the study of 683 participants, of whom 230 were healthy participants and the others had different functional gastrointestinal disorders (Table 1). A significant association of *CNR1* rs806378 genotype and symptom phenotype was observed (Table 1A; \(\chi^2 p=0.027 \)). On the other hand, there was a non-significant association of the *CNR1* (AAT)\(n\) repeats and symptom phenotype (\(\chi^2 p=0.105 \)).

Association of *CNR1* Genetic Variation and Small Bowel and Colonic Transit

This analysis was based on data from 190 individuals: 187 had measurements of colonic filling at 6 hours (a valid surrogate of small bowel transit time), and 190 participants underwent colonic transit measurement at 24 hours. There were no associations of any genotype with small bowel transit in the entire cohort or subgroups of the cohort (Table 2A, Table 3A).

On average, the TT genotype of *CNR1* rs806378 was associated with a numerically faster colonic transit in the entire cohort with transit measurements (Table 2A). There was a borderline *CNR1* rs806378 gene by subgroup interaction (\(p=0.10\)) for colonic transit at 24 hours, with significant (\(p=0.024\)) association of rs806378 with colonic transit in the IBS-D group for the comparison of CC and CT/TT groups. Table 2B shows that, in particular, the TT genotype group had faster colonic transit at 24 hours compared to the CC and CT genotype groups. In the IBS-D group, the magnitude of the difference in mean colonic transit GC at 24 hours was about 0.6 GC unit (least square means of 2.94 for the CC genotype and 3.52 for the CT/TT combined group); similarly, there was numerically faster colonic transit at 48 hours.

For *CNR1* (AAT)\(n\) there was a significant gene by phenotype interaction for colonic transit GC at 24 hours (\(p=0.021\)) and a significant interaction at 48 hours (\(p=0.002\)). Particularly, in the healthy participant group, the association of *CNR1* (AAT)\(n\) was significant for GC at 24
hours (p=0.005) and at 48 hours (p<0.001), but there were no significant associations within the IBS subgroups (Table 3B).

Association of *CNR1* Genetic Variation and Rectal Sensation Ratings (Table 4)

This analysis was based on 402102 participants. There were a significant overall association of *CNR1* rs806378 with sensation rating of gas at 36 mmHg distension (p=0.037) and a significant gene by phenotype interaction (p=0.002), with the strongest associations in the IBS-D (p=0.001) and IBS-A (p=0.021) subtypes. There were no significant overall associations of *CNR1* rs806378 with pain sensation ratings, although a modest association within IBS-D with genotype was found (p=0.040). For *CNRI* (AAT)n, there was a significant (p=0.046) gene by phenotype interaction for the sensation rating of gas at 36mm, with the strongest association observed in the IBS-D (p=0.034) subgroup and no significant association with pain sensation.

DISCUSSION

The endocannabinoids are synthesized on demand in postsynaptic neurons and released in postsynaptic clefts where they act as retrograde messengers to act through many mechanisms [e.g., activation of CB1 receptors on cholinergic neurons, inhibition of cAMP production and inhibition of acetylcholine (ACh) release in the enteric nervous system]. Thus, CB1 receptors also modulate intestinal propulsion by an attenuation of the peristaltic reflex (30).

In humans, we recently showed that a non-selective cannabinoid agonist reduced fasting colonic motility in non-constipated IBS patients (27). CB1 and CB2 receptor activation inhibits abdominal sensitivity to colorectal distension (a surrogate of visceral pain) in rats under basal conditions (20), and conversely, relatively low doses of the non-selective CB agonist, dronabinol, increased colonic sensation to distension in humans (11). In the present study, we explored the associations of genetic variations in *CNRI* and small bowel and colonic transit and
rectal sensation in humans. The study demonstrates the association between variations in the
CNR1 gene, that is rs806378 and (AAT)n triplets, with symptom phenotype, small bowel and
colonic transit, and rectal sensation in humans. The study was based on previously identified
patients with functional gastrointestinal disorders (n=469455) and healthy controls (n=230228),
all of whom reside in the Midwest USA. Cannabinoid receptors, especially CNR1, are reported
to affect numerous gastrointestinal functions, including pain modulation, inflammation, and
gastric and colonic motility (11,12,15).

Our study focused on CNR1 gene variations at rs806378 locus and (AAT)n triplet repeats
in the 3’ flanking region, as these have been proposed as candidate genes based on their
functional effects. We demonstrated a significant association of CNR1 rs806378 genotype, but
not of CNR1 (AAT)n repeat with symptom phenotype. In addition, our studies support the
hypothetical mechanism of the association of CNR1 rs806378 with IBS because of the
demonstrated associations with colonic transit and rectal sensation of gas, but not pain. Thus, we
found significant (p=0.024) associations of rs806378 with colonic transit in the IBS-D group for
the comparison of CC and CT/TT groups and with sensation rating of gas at 36 mmHg distension
(p=0.037) the strongest associations being observed in the IBS-D (p=0.001) and IBS-A
(p=0.021) subtypes. The functional significance of the T allele at rs806378 is supported by the
observation that, among IBS-D patients receiving the CB1 and CB2 receptor agonist, dronabinol,
the CT/TT genotype subgroup, but not the CC genotype subgroup, showed slowing of colonic
transit post-treatment with both 2.5 and 5 mg doses of dronabinol, compared to placebo
treatment (28).

The T allele of CNR1 rs806378 was shown to increase nuclear protein binding in an
electrophoretic mobility shift assay (23), creating a binding site for arylhydrocarbon receptor
translocator (ARNT), a member of the basic helix-loop-helix/Per-Arnt-Sim protein family. The ancestral C-allele does not bind to either ARNT or any other nuclear protein. It is unclear how this allelic change and the associated alteration in nuclear protein binding would ultimately result in the changes in the quantitative traits measured (transit and sensation).

Although a significant association of \textit{CNR1} (AAT)n was identified in a Korean cohort of IBS patients, Park et al. (17) recommended that the identified association required replication, given the multiple comparisons, univariate associations, and relatively small sample size of the study. Our study demonstrated \textit{CNR1} (AAT)n gene by phenotype interactions were observed for colonic transit at 24h (p=0.021) and 48h (p=0.001), and gas (p=0.046; the strongest association for IBS-D, p=0.034), but not pain sensation; however, the strongest association with transit was in controls, not in IBS patients.

The association of \textit{CNR1} (AAT)n genotype with colonic transit at 24 and 48 hours was mainly demonstrable in the healthy controls, not in IBS patients. Moreover, we did not identify a significant association with the symptom phenotype of predominantly Caucasian IBS patients, in contrast to the association reported in Koreans (17).

The strengths of our study include the associations with quantitative traits in addition to symptom phenotype, and the consistency of the information regarding associations with symptoms and quantitative traits (positive with \textit{CNR1} rs806378 and negative with \textit{CNR1} [AAT]n). Table 5 details a post hoc analysis showing the power (based on 2-sample comparison using a 2-sided alpha level of 0.05) to detect effect sizes of 20 to 30% in the quantitative traits, colonic transit at 24 hours and sensation ratings of gas in response to 36 mmHg distension. In each analysis, which assumed the data would be subjected to the dominant genetic model, the
sample sizes are based on the observed major and minor allele frequencies for rs806378 and AAT(n) repeats, and the actual number of participants in whom the quantitative trait was available. Note from this analysis, that there was >80% power to detect a clinically meaningful effect on transit, that is 0.5 GC units or above, and there was >80% power to detect at least a 25% difference in sensation rating of gas in response to the distension. Therefore, the absence of association of (AAT)n genetic variation with these quantitative traits in IBS patients is a true negative and is not due to a type 2 statistical error.

A similar analysis was conducted to appraise the power to detect association of the genetic variation with symptom phenotype. There were 359 subjects in the CC subgroup and 327 subjects in the CT/TT subgroup for the rs806378 variation, and 304 >10/>10 AAT repeat subjects and a total of 379 in the ≤10/>10 AAT repeats subgroup for the (AAT)n repeat variation. The study was significantly underpowered to detect differences by genotype in any symptom subgroup, except for the IBS-D subgroup (rs806378, p=0.018; >10/>10 AAT repeats, p=0.013).

The limitations of our study are the predominantly Caucasian cohort with insufficient numbers of other races or ethnic groups to make the findings generalizable. As in any such genetic association study, the associations with rs806378 genotype do not necessarily result from the effects of this genotype, as it may be in linkage disequilibrium with the variation that actually causes the alteration in the functions of the CNR1 gene or the resulting proteins.

In conclusion, our study) suggests that, in addition to the effects of genetic variation in FAAH metabolism of endocannabinoids, CB1 receptor-related mechanisms modify colonic transit and sensation and may influence the development of symptoms in Caucasian patients with
IBS, particularly IBS-D. These data support the hypothesis that CB1 receptors may play a role in the control of colonic transit and sensation in humans and deserve further study as potential direct therapeutic targets in lower functional gastrointestinal disorders.
Acknowledgments: The authors thank Mrs. Cindy Stanislav for excellent secretarial assistance.

Funding: This work was supported by grant R01 DK79866 from National Institutes of Health to Dr. Camilleri.

Disclosure: The authors have no conflicts of interest.

Authors’ contributions: G. Kolar: research fellow, collection of data; writing manuscript; M. Vazquez-Roque: study conceptualization and supervision of project; P. Carlson: genotyping; M. Camilleri: study conceptualization, data analysis, writing manuscript; D. Burton: scintigraphic studies and analysis; A.R. Zinsmeister: Statistical analysis.
REFERENCES

Table 1A. *CNR1* rs806378: Frequency Distribution of Symptom Phenotypes (%) among Different Genotypes. There is a significant association of this *CNR1* rs806378 genotype and symptom phenotype. (Chi square $p=0.027$)

<table>
<thead>
<tr>
<th></th>
<th>IBS-C</th>
<th>IBS-D</th>
<th>IBS-A</th>
<th>CAP</th>
<th>Dyspepsia</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>154</td>
<td>173</td>
<td>80</td>
<td>18</td>
<td>30</td>
<td>228</td>
</tr>
<tr>
<td>CC (n=358)</td>
<td>21.2</td>
<td>29.0</td>
<td>11.7</td>
<td>2.2</td>
<td>4.5</td>
<td>31.3</td>
</tr>
<tr>
<td>CT (n=264)</td>
<td>25.8</td>
<td>21.2</td>
<td>13.3</td>
<td>1.9</td>
<td>4.2</td>
<td>33.7</td>
</tr>
<tr>
<td>TT (n=61)</td>
<td>16.4</td>
<td>21.3</td>
<td>4.9</td>
<td>8.2</td>
<td>4.9</td>
<td>44.3</td>
</tr>
</tbody>
</table>

Table 1B. *CNR1* AAT Triplet Repeats: Frequency Distribution of Symptom Phenotypes (%) among Different Genotypes. There is a non-significant association of the *CNR1* AAT repeats and symptom phenotype (Chi square $p=0.105$); 10/10 refers to the number of AAT repeats in each allele.

<table>
<thead>
<tr>
<th></th>
<th>IBS-C</th>
<th>IBS-D</th>
<th>IBS-A</th>
<th>CAP</th>
<th>Dyspepsia</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>154</td>
<td>173</td>
<td>80</td>
<td>18</td>
<td>30</td>
<td>228</td>
</tr>
<tr>
<td><10/<10 (n=84)</td>
<td>19.1</td>
<td>28.6</td>
<td>15.5</td>
<td>3.6</td>
<td>8.3</td>
<td>25.0</td>
</tr>
<tr>
<td><10/>10 (n=295)</td>
<td>23.4</td>
<td>29.2</td>
<td>11.5</td>
<td>2.4</td>
<td>3.0</td>
<td>30.6</td>
</tr>
<tr>
<td>>10/>10 (n=304)</td>
<td>22.7</td>
<td>20.7</td>
<td>10.9</td>
<td>2.6</td>
<td>4.6</td>
<td>38.5</td>
</tr>
</tbody>
</table>

IBS-C=constipation-predominant irritable bowel; IBS-D=diarrhea-predominant irritable bowel syndrome; IBS-A=mixed or alternating irritable bowel syndrome; CAP=chronic abdominal pain
Table 2A. CNR1 rs806378: Distribution of Demographics and Transit Data in the Participants with Transit Measurements
(mean ± SD, unless otherwise indicated)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>CC</th>
<th>CT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype distribution, N</td>
<td>100</td>
<td>76</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>190</td>
<td>37.5±11.7</td>
<td>37.9±12.7</td>
<td>40.9±13.0</td>
</tr>
<tr>
<td>Females/Males (%F)</td>
<td>190</td>
<td>88/12 (88)</td>
<td>69/7 (91)</td>
<td>10/4 (71)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>186</td>
<td>27.5±5.8</td>
<td>26.8±4.8</td>
<td>26.3±3.4</td>
</tr>
<tr>
<td>CF6, %</td>
<td>187</td>
<td>48.8±31.4</td>
<td>50.1±29.4</td>
<td>56.0±30.0</td>
</tr>
<tr>
<td>GC24</td>
<td>190</td>
<td>2.6±1.1</td>
<td>2.5±1.2</td>
<td>3.0±1.1</td>
</tr>
<tr>
<td>GC48</td>
<td>188</td>
<td>3.7±1.2</td>
<td>3.6±1.1</td>
<td>4.0±1.1</td>
</tr>
</tbody>
</table>

CF6 = colonic filling at 6 hours; GC24 = geometric center at 24 hours; GC48 = geometric center at 48 hours
Table 2B. *CNR1* rs806378: Distribution of Colonic Transit Data According to Genotype in Different IBS Symptom Phenotype Subgroups among 190 Patients with Colonic Transit Measured at 24 Hours. There was borderline gene by subgroup interaction (p=0.10) for colonic transit at 24h, with a significant (p=0.014) association of rs806378 with colonic transit (GC at 24h) in IBS-D group.*

<table>
<thead>
<tr>
<th></th>
<th>IBS-C</th>
<th>IBS-D</th>
<th>IBS-A</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>CT</td>
<td>TT</td>
<td>CC</td>
</tr>
<tr>
<td>#</td>
<td>28</td>
<td>25</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>CF6,%</td>
<td>49.2±29.0</td>
<td>45.0±27.8</td>
<td>60.0±32.0</td>
<td>49.0±35.7</td>
</tr>
<tr>
<td>GC24</td>
<td>2.2±1.0</td>
<td>1.8±0.6</td>
<td>2.3±1.0</td>
<td>3.0±1.2</td>
</tr>
<tr>
<td>GC48</td>
<td>3.0±1.1</td>
<td>3.0±1.0</td>
<td>3.6±1.2</td>
<td>4.2±1.0</td>
</tr>
</tbody>
</table>

CF6 = colonic filling at 6 hours; GC24 = geometric center at 24 hours; GC48 = geometric center at 48 hours
Table 3A. CNR1 AAT Triplet Repeats: Distribution of Data and Demographics in the Entire Cohort of Participants with Transit Measurements (mean ± SD, unless otherwise indicated)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th><10/<10</th>
<th><10/>10</th>
<th>>10/>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype distribution, N</td>
<td></td>
<td>15</td>
<td>94</td>
<td>81</td>
</tr>
<tr>
<td>Age, y</td>
<td>190</td>
<td>35.1±11.5</td>
<td>39.9±12.9</td>
<td>36.1±11.1</td>
</tr>
<tr>
<td>Females/Males (%F)</td>
<td>190</td>
<td>13/2 (87)</td>
<td>83/11 (88)</td>
<td>71/10 (88)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>186</td>
<td>27.2±5.1</td>
<td>26.5±4.3</td>
<td>27.8±6.1</td>
</tr>
<tr>
<td>CF6,%</td>
<td>187</td>
<td>46.2±30.0</td>
<td>49.8±32.4</td>
<td>50.6±28.3</td>
</tr>
<tr>
<td>GC24</td>
<td>190</td>
<td>2.3±1.0</td>
<td>2.7±1.1</td>
<td>2.5±1.1</td>
</tr>
<tr>
<td>GC48</td>
<td>188</td>
<td>3.2±1.3</td>
<td>3.8±1.1</td>
<td>3.6±1.1</td>
</tr>
</tbody>
</table>

CF6 = colonic filling at 6 hours; GC24 = geometric center at 24 hours; GC48 = geometric center at 48 hours
Table 3B. *CNR1* AAT Triplet Repeats: Distribution of Colonic Transit Data in Different IBS Symptom Phenotype Groups.

There was a borderline gene by subgroup interaction (p=0.06) for GC at 24 h, and significant (p=0.002) interaction for GC at 48 h, with significant associations of *CNR1* (AAT)n with colonic transit in the healthy participant subgroup, GC at 24 h (p=0.027) and at 48 h (p=0.001). Data show (mean±SD)

<table>
<thead>
<tr>
<th>AAT repeats</th>
<th>IBS-C</th>
<th>IBS-D</th>
<th>IBS-A</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td><10/ <10</td>
<td>3</td>
<td>27</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>>10/ >10</td>
<td>20.7±11.7</td>
<td>47.6±32.2</td>
<td>52.2±24.3</td>
<td>60.3±28.0</td>
</tr>
<tr>
<td>GC24</td>
<td>1.6±0.3</td>
<td>2.2±1.0</td>
<td>2.0±0.6</td>
<td>2.9±1.4</td>
</tr>
<tr>
<td>GC48</td>
<td>2.0±0.3</td>
<td>3.1±1.1</td>
<td>3.0±1.0</td>
<td>3.8±1.4</td>
</tr>
</tbody>
</table>

CF6 = colonic filling at 6 hours; GC24 = geometric center at 24 hours; GC48 = geometric center at 48 hours
Table 4A. *CNR1* rs806378: distribution of sensation ratings (on 100mm visual analog scale) of gas and pain during rectal isobaric distensions at 36 mmHg above baseline operating pressure according to genotype in different IBS symptom phenotype subgroups (data show mean + SD). There was a significant overall association of *CNR1* rs806378 with gas sensation rating (p=0.034) and gene by phenotype interaction (p=0.003) with the strongest associations in the IBS-D (p=0.001) and IBS-A (p=0.022) subgroups. There were no significant overall associations of *CNR1* rs806378 with pain sensation ratings, although a modest association within IBS-D with genotype was found (p=0.040).

<table>
<thead>
<tr>
<th>rs806378</th>
<th>IBS-C</th>
<th>IBS-D</th>
<th>IBS-A</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>CT</td>
<td>TT</td>
<td>CC</td>
</tr>
<tr>
<td>N</td>
<td>17</td>
<td>13</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Gas</td>
<td>67.4±29.4</td>
<td>60.5±25.0</td>
<td>43.0±19.8</td>
<td>45.5±32.8</td>
</tr>
<tr>
<td>Pain</td>
<td>58.2±29.7</td>
<td>49.2±30.0</td>
<td>43.0±9.9</td>
<td>53.2±25.4</td>
</tr>
</tbody>
</table>

IBS-C=constipation-predominant irritable bowel; IBS-D=diarrhea-predominant irritable bowel syndrome; IBS-A=mixed or alternating irritable bowel syndrome
Table 4B. **CNR1** AAT Repeat: Distribution of Sensation Ratings of Gas and Pain during Rectal Isobaric Distensions at 365 mmHg above Baseline Operating Pressure According to Genotype in Different IBS Symptom Phenotype Subgroups (data show mean±SD). There was a significant (p=0.046 gene by phenotype interaction for the sensation rating of gas at 36mm with the strongest association observed in the IBS-D (p=0.034) subgroup, and no significant association with pain sensation ratings.

<table>
<thead>
<tr>
<th>AAT repeats</th>
<th>IBS-C</th>
<th>IBS-D</th>
<th>IBS-A</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td><10/ <10</td>
<td><10/ >10</td>
<td>>10/ >10</td>
<td><10/ <10</td>
<td><10/ >10</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>18</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Gas</td>
<td>1.0</td>
<td>66.0±27.3</td>
<td>58.7±28.3</td>
<td>51.0±48.9</td>
</tr>
<tr>
<td>Pain</td>
<td>2.0</td>
<td>57.0±30.0</td>
<td>46.5±27.3</td>
<td>62.3±41.1</td>
</tr>
</tbody>
</table>

{IBS-C=constipation-predominant irritable bowel; IBS-D=diarrhea-predominant irritable bowel syndrome; IBS-A=mixed or alternating irritable bowel syndrome}
Table 5. Post-hoc statistical power to detect 20-25% effect sizes for colonic transit and gas sensation ratings. Note that the actual numbers of participants with quantitative trait data, and the observed allele frequencies were used to generate these power calculations. Therefore, our study had sufficient power to detect clinically meaningful differences according to genotype. § As a percentage of listed overall mean; units are geometric center units for colonic transit and mm on 100 mm VAS scale for sensation ratings. † Based on 2-sample comparison using a 2-sided alpha level of 0.05.

<table>
<thead>
<tr>
<th>Response</th>
<th>Effect size % (units) §</th>
<th>Power†</th>
<th>Power†</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Overall mean±SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC 24h (2.6±1.1)</td>
<td>20% (0.52)</td>
<td>88%</td>
<td>87%</td>
</tr>
<tr>
<td></td>
<td>25% (0.65)</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td></td>
<td>30% (0.78)</td>
<td>>99%</td>
<td>>99%</td>
</tr>
<tr>
<td>Gas Rating @ 36mm (62±28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20% (12)</td>
<td>56%</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>25% (16)</td>
<td>82%</td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td>30% (19)</td>
<td>92%</td>
<td>92%</td>
</tr>
</tbody>
</table>