Prokinetic Effects of Mirtazapine on Gastrointestinal Transit

Jieyun Yin¹, Jun Song¹, Yong Lei³, Xiaohong Xu³, Jiande DZ Chen¹,²,³

¹.Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX, US
².Ningbo Pace Translational Medical Research Center, Ningbo, China
3. Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, US

Short running head: Mirtazapine on gastrointestinal motility

Correspondence:
Jieyun Yin, MD
Division of Gastroenterology, Route 0655
Galveston, TX 77555-0655
Email: jieyunyin07@gmail.com
ABSTRACT

Mirtazapine is a noradrenergic and specific serotonergic antidepressant. The aim of this study was to investigate the effects of mirtazapine on gastrointestinal motility in dogs, including solid gastric emptying, antral and small intestinal contractions, small intestinal and colonic transit.

Methods: Six dogs were implanted with two cannulas located at the duodenum and the ascending colon; Another 6 dogs were implanted with gastric cannula 6cm proximal to the pylorus. Mirtazapine 45mg was administered orally 90 minutes before the study.

Results: 1) Mirtazapine accelerated gastric emptying during the entire 3 hours in normal dogs (P < 0.04) and accelerated delayed gastric emptying induced by rectal distention (P < 0.04). 2) Mirtazapine restored impaired gastric tone and accommodation induced by rectal distention (P < 0.05) 3) No significant changes were noted in small intestinal contractions or transit with mirtazapine (P > 0.1). 4) Mirtazapine accelerated colonic transit at 2 and 4 hours but not 6 hours. The geometric center (GC) was increased from 1.9 ± 0.6 to 3.0 ± 0.5, 3.9 ± 0.5 to 4.7 ± 0.1 at 2 and 4 hours respectively (P = 0.04 vs. corresponding control). Conclusions: Mirtazapine improves gastric emptying in healthy dogs and normalizes rectal distention-induced delay in gastric emptying and accelerates colon but not small intestinal transit in healthy dogs. Clinical studies are warranted to assess the effects of mirtazapine on gastrointestinal motility and sensory functions in patients with functional GI diseases.

Key words: antidepressant; gastrointestinal motility; gastric emptying; colonic transit; rectal distention
INTRODUCTION

Delayed gastric emptying is reported frequently in various gastrointestinal (GI) motility disorders, such as gastroesophageal reflux disease (GERD), functional dyspepsia, and gastroparesis (25, 28, 35). Delayed gastric emptying is associated with upper gastric symptoms such as nausea, vomiting, fullness, bloating and early satiety (25). Prokinetics are the first-line medicine for treating delayed gastric emptying. However, there is a poor correlation between the acceleration of gastric emptying and the improvement of gastric symptoms with prokinetics (27).

Upper GI symptoms are common in patients with lower gastrointestinal motility disorders. It is reported that 30-50% of patients with functional gastrointestinal disorders had both functional dyspepsia (FD) and irritable bowel syndrome (IBS) (23, 37). Patients with constipation-dominant IBS reported significantly more overall GI symptoms when compared to the patients with diarrhea-dominant IBS (37). One study has reported that 90% patients with overlapping symptoms exhibited rectal intolerance to distention (4). Currently, there is lack of effective medications for treating both upper and lower gastrointestinal symptoms.

Antidepressants are often prescribed in patients with IBS or FD (7, 17, 24). Their efficacy on treating IBS may be attributed to a reduction in visceral sensation and a relief of depression (5). The rationale for the use of antidepressants in FD was considered to reduce the severity of psychological symptoms; central analgesic actions and local pharmacological actions on the upper gut (38). However, the effects of antidepressants on the GI motility have not been reported frequently. Mirtazapine was reported to act on both noradrenergic and serotonergic systems, suggesting a brand-new antidepressive mechanism compared to other antidepressants. It increases the release of norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) by blocking presynaptic α_2-adrenergic receptors (11, 16). Recently, it was reported mirtazapine reduced visceral hypersensitivity and accelerated liquid gastric emptying in rats with neonatal colon sensitivity (42). Clinic case report showed that mirtazapine was effective in treating severe gastroparesis unresponsive to the conventional prokinetic treatment (29); in a patient with diabetic gastroparesis who is recalcitrant to first-line treatment, mirtazapine improved gastroparetic symptoms (20). We therefore hypothesized that Mirtazapine might have a prokinetic effect on GI motility.
The aim of this study was to investigate the effect of Mirtazapine on GI motility in a canine model under normal conditions and during rectal distention. Experiments were designed to assess the possible prokinetic effects of mirtazapine on solid gastric emptying, and small intestinal and colonic transit.

MATERIALS AND METHODS

Animal model and surgical procedures

Twelve healthy female hound dogs (22-26 kg) were used. Under general anesthesia, in six of the dogs, two cannulas were implanted in each animal; one at the duodenum, 20 cm distal to the pylorus for the assessment of solid gastric emptying and small intestinal motility; the other at the ascending colon, 6 cm distal to the cecum for the measurement of colonic motility. In other six dogs, a gastric cannula was implanted at the anterior wall of the stomach 6 cm proximal to the pylorus for assessing gastric tone and accommodation. The study was initiated after the dogs were completely recovered from the surgery, usually 2 weeks after the operation. The study was approved by the Animal Care and Use Committee at both the University of Texas Medical Branch at Galveston, Texas, and VA Medical Center, Oklahoma City, Oklahoma.

Experimental protocols

Experiment 1: Assessment of complete gastric emptying of solid: This experiment was performed in 6 dogs with a duodenal cannula. Each dog was studied in one session. The purpose of this session was to measure the total gastric emptying of solids and to determine the percentage of gastric chyme we were able to collect for complete gastric emptying. The experiment was needed because some gastric chyme might bypass the duodenal cannula and flow distally to the small intestine. After an overnight fast, each dog was fed with 375g of solid dog food (413 Kcal, Pedigree, Chopped Chicken). Immediately after the ingestion of the test meal, the duodenal cannula was opened for collecting gastric chyme emptied from the stomach. The chyme was collected every 15 min for the first hour and every 30 min for subsequent hours. The collection was continued for about 8 hours until the completion of gastric emptying (nothing except secretion was collected from the cannula for a period of 30 min). The amount of total collections was defined as 100% gastric emptying.
Experiment 2: Effects of mirtazapine on solid gastric emptying: The same 6 dogs from Exp. 1 were used in this experiment. Each dog was studied in four sessions on separate days in a randomized order: control, mirtazapine (Remeron, Rockford, IL), rectal distention (RD) and RD + mirtazapine. In the control session, no medication was given. Since our aim was to study the effect of mirtazapine on gastrointestinal transit, and anti-depressants are often used to treat patients with functional gastrointestinal diseases. Clinically, the tablet of mirtazapine is mixed with the vehicle, it is therefore more relevant for us to compare the difference between the use of mirtazapine tablets and no-medication at all. The method of gastric emptying was the same as in Experiment 1 except that the total measurement time was 3 hours; the duration was chosen based on a previous study indicating that more than 80% of the solids were emptied during the first 3 hours (40). Mirtazapine (45 mg) was administered orally 1.5 hours prior to the meal. The dose of 45 mg was chosen based on the dosage used in clinic (30 mg/day) (7); since the dosage of 30 mg/day was for chronic treatment and the current study was acute, we chose a higher dose of 45mg. The half-life of mirtazapine was reported to be 14 ± 3 hrs with a single oral dose of 45 mg (19). In two sessions with RD, RD was performed during 60-90 min after the meal. From preliminary studies, we observed that gastric emptying of solid was the fastest during 60-90 min after the meal and therefore RD was performed during that period (40). RD was achieved by the inflation of a latex balloon inserted into the rectum with 120ml of air (6).

Experiment 3: Effects of mirtazapine on gastric tone and accommodation. The experiment was performed in 6 dogs with the gastric cannula. Each dog was studied for four sessions in a randomized order: control, mirtazapine (45mg), RD, and RD + mirtazapine (45mg). Gastric tone and accommodation were assessed using an established method of Barostat (Distender Series IIR, G & J Electronics Inc., Willowdale, Ontario, Canada) (36, 41, 45). Gastric volume was recorded for 30 min in the fasting state and 30 min after a liquid meal (237ml, 240 Kcal, Boost) in the sessions without RD, and for 60 min in the fasting state and 60 min after the liquid meal in the sessions with RD, in which RD was performed during the second 30-min fasting period and first 30-min postprandial period.

Experiment 4: Effects of mirtazapine on small intestinal contractions and transit. This experiment was performed in the same six dogs as in Experiment 1. It consisted of two sessions on two separate days in a randomized order: control and mirtazapine 45 mg. After an overnight
fast, each dog was fed with 375 g solid meal to induce postprandial small intestinal contractions. Small intestinal contractions were then recorded for 60 min after the meal.

Small intestinal transit was assessed simultaneously with gastric emptying in Experiment 1 in two of the sessions: control and mirtazapine. Immediately after the meal, a 30 ml solution with phenol red (0.5 mg/ml, dissolved in saline) was injected through the duodenal cannula, then 50 ml saline was injected every 30 min until the end of the experiment; these saline injections were used to offset the diversion of gastric secretion and chyme from the duodenum cannula. Samples through the colonic cannula were collected every 15 min during the experiment and small intestinal transit was determined by the time of first appearance of phenol red from the colonic cannula. The appearance of phenol red in the colonic collection was verified by spectrophotometer after the experiment.

Experiment 5: Effects of mirtazapine on colon transit. Each dog was studied in 2 randomized sessions with an interval of 3-5 days: control and mirtazapine. After an overnight fast, mirtazapine 45 mg was administered orally 1.5 hours prior to the experiment. The experiment was initiated immediately after the insertion of a capsule containing 24 radiopaque markers (Sitzmarks – Konsyl Pharmaceuticals, Easton, MD) through the colonic cannula. Before inserting the sitzmarks, the colon was flushed gently with 20 ml saline through the colonic cannula. The capsule was dissolved in the colon within 10 min. Abdominal x-ray was performed at 2 hours, 4 hours and 6 hours after the insertion of the capsule. To avoid possible stress effects, the animals were acclimated to x-ray film taking several times a week before the initiation of the colon transit test.

Measurements and analyses

Measurement of solid gastric emptying. The collected chyme samples from the duodenal cannula were centrifuged for 20 min (3000 rpm). After centrifugation, each sample was placed in a -20°C refrigerator for 4 hours and then kept for 30-45 min at room temperature; in this way, the total sample in each tube was completely transferred. The entire precipitate of each collection was then taken out, placed in a paper plate and dried in air for a few days until no changes in weight. The percentage of gastric emptying for each collection was calculated using the following formula: % gastric emptying for each collection = Wn/Wt×100%. Whereas Wn was the dried weight of the collection and Wt was the total dried weight of all samples collected in
the same dog in Experiment 1(40). This normalized percentage of gastric emptying compensated for any possible loss of ingested food, such as bypass of gastric chyme to the distal small intestine and any absorption that might have occurred before the collection from the duodenal cannula.

Measurement of gastric tone and accommodation: Gastric tone was assessed from the measured gastric volume. At the constant operating pressure, an increase in gastric volume reflects a decrease in gastric tone, and vice versa. Gastric accommodation was calculated by the difference in gastric volume before and after a meal.

Measurement and analysis of small intestinal contractions: Small intestinal contractions were measured by the same manometric system. All pressure sensors were located in the jejunum with the most proximal one 15 cm distal to the duodenal cannula. Intestinal contractions measured from the middle sensor which was 25 cm distal to the duodenal cannula showed the best quality and were chosen to be analyzed (43), from 0 to 60 min.

Measurement of colonic transit: Colonic transit was assessed by counting the numbers of radiopaque markers from X-ray films in different segments of the colon at different time points. The colon was divided into 5 segments, including ascending colon (segment 1), transverse colon, splenic flexure, descending colon and rectum (segment 5); and the markers expelled out from the anus were considered to be in segment 6. The geometric center (GC) of the markers was used to represent colon transit and calculated as follows:

\[
GC = \frac{\sum (P_n \cdot n)}{24} \text{ for } n = 1, 2, 3, 4, 5, 6,
\]

Where, \(P_n \) was the number of radiopaque markers in the \(n \)th segment and \(n \) was the number of the segment.

Statistical Analysis

All data are presented as mean ± SEM. One-way ANOVA was used to investigate differences in gastric emptying and GC at different time points among various sessions. Paired t-test was used to evaluate differences in antral contractions and small intestinal motility between control and mirtazapine. A \(P \) value of < 0.05 was considered statistically significant.
RESULTS

Effects of mirtazapine on solid gastric emptying and antral contractions

Under normal condition without RD, mirtazapine accelerated gastric emptying during the entire 3-hour experimental period (Figure 1). Compared to the control session, gastric emptying was accelerated with mirtazapine by 48.1% at 90 min ($P < 0.01$), 38.2% at 120 min ($P = 0.02$) and 17.7% at 180 min ($P = 0.03$).

RD during 60-90 min substantially delayed gastric emptying (Figure 1). Gastric emptying was reduced with RD by 46.2% at 90 min ($P < 0.01$), 45.2% at 120 min ($P < 0.001$) and 36.3% at 180 min ($P < 0.01$). As shown in Figure 1, mirtazapine accelerated gastric emptying during 45-60 min without RD and normalized RD-induced delayed gastric emptying during 90-180 min: the percentages of gastric emptying during 90-180 min in the session with RD and mirtazapine were comparable to those in the control session without RD. The acceleration before the administration of RD confirmed that mirtazapine was able to increase gastric emptying even under the normal condition.

Consistent with the findings on gastric emptying data, mirtazapine enhanced antral contractions in the fed state. As shown in the Figure 2, the contractile index (sample-by-sample average of manometric data) was increased from 8.0 ± 0.7 mmHg in the control session to 12.9 ± 3.0 mmHg with mirtazapine ($P = 0.03$).

Effects of mirtazapine on gastric tone and accommodation

Mirtazapine had no effects on gastric tone or gastric accommodation in the normal physiological condition (without RD). RD significantly reduced both gastric tone and gastric accommodation; whereas mirtazapine partially blocked the inhibitory effects of RD on gastric tone and gastric accommodation. The RD-induced increase in gastric volume in the fasting state was $253.6 \pm 61.1\%$ without mirtazapine and $97.8 \pm 23.1\%$ with mirtazapine ($P=0.03$). Gastric accommodation was $149.4 \pm 29.8ml$ with RD and $290.9 \pm 45.7ml$ with RD plus mirtazapine ($P=0.012$) (Figure 3).

Effects of mirtazapine on small intestinal transit and contractions

Mirtazapine had no effect on either small intestinal transit or contractions. The small intestinal transit, represented by the first appearance of phenol red in the colon cannula, was not different between the control and mirtazapine sessions (137.8 ± 19.3 min vs. 150.0 ± 17.4 min, $P = 0.3$, Figure 4). Neither, was there a difference in the small intestinal contractions between the
two sessions. The postprandial small intestinal contractile index was 10.6 ± 1.4 mmHg in the control session and was 13.6 ± 3.7 mmHg with mirtazapine ($P = 0.2$, Figure 4).

Effects of mirtazapine on colonic transit

Mirtazapine accelerated colonic transit at 2 and 4 hours after the insertion of the markers from the colon cannula. As shown in the Figure 5, the GC was increased from 1.9 ± 0.6 to 3.0 ± 0.5 at 2 hours and 3.9 ± 0.5 to 4.7 ± 0.1 at 4 hours ($P = 0.04$, control vs. mirtazapine at both time points). At 6 hours, the GC became similar between the two sessions as most of the markers were in the rectum (5.0 ± 0.1 vs. 5.0 ± 0.1, $P = 0.5$).

DISCUSSION

In the current study, we have found that mirtazapine accelerated solid gastric emptying in dogs with or without RD. Mirtazapine also accelerated colonic transit but showed no effects on small intestinal transit or contractions.

Delayed gastric emptying is common in patients with gastrointestinal motility disorders, such as FD and gastroparesis. Treatment options for FD and gastroparesis are very limited. While prokinetics stimulate peristalsis and improve gastric pump functions by enhancing antral contractility, electrical rhythm and/or antroduodenal coordination, sometimes, they do not result in significant symptom improvement (27, 34). This is because patients with delayed gastric emptying often have impaired gastric accommodation and/or visceral hypersensitivity. The failure of certain prokinetics on improving symptoms may be attributed to their detrimental effects on gastric accommodation and/or ineffectiveness in improving visceral hypersensitivity.

Due to lack of effective therapies on functional GI motility disorders, antidepressants are commonly prescribed in clinic practices, such as tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitor (SSRIs). It is conceivable for treating functional GI disorders with antidepressants because these drugs are used to treat depression and reduce chronic pain. However, the evidence is conflicting and there is lack of large controlled trials. Mirtazapine is a noradrenergic and specific serotonergic antidepressant (NaSSA), a newer class of antidepressant which is characterized by a potent antagonism of presynaptic α_2 adrenergic receptors on both noradrenaline and serotonin neurons (11). Mirtazapine was noticed to be beneficial for bowel movement in IBS patients while treating depression (39). In patients with severe gastroparesis unresponsive to the conventional prokinetic treatment, refractory nausea and vomiting that
persisted for over 7 months were improved dramatically within a few days of once-daily mirtazapine dosing (29). In a previous study, we observed improvement of gastric emptying with mirtazapine in colonic sensitized “IBS-like” rats (42). In the current canine study, we found that mirtazapine improved gastric emptying, gastric accommodation and colon transit; this was different from what was reported in a clinical study in which mirtazapine showed no effects on gastric emptying in healthy volunteers (7). The difference might be attributed to the differences in species (dogs vs. humans), dosage (45 mg vs. 30 mg) and/or duration of the study (acute vs. chronic).

There were at least two limitations in the present study: lack of dose-response study and absence of chronic repetitive study. A dose responsive study was, however, performed in our previous study investigating the ameliorating effect of mirtazapine on neonatal rectal distention-induced gastric hypersensitivity. The absence of any data on repetitive chronic study was attributed to the fact that the current canine model with rectal distention was not suitable for such a study; rectal distention was performed to induce delayed gastric emptying, however, it was only convenient for assessing acute effects but not adequate for a chronic study.

Overlapping syndrome is common in the clinic practice; upper GI dyspepsia symptoms are often present in patients with lower GI tract disorders, such as constipation. The mechanisms have not been elucidated and there is lack of satisfactory treatment options for overlapping syndromes. Fecal or gas distention might be one of the major contributing factors in producing upper GI symptoms in patients with lower GI dysmotility. Rectal balloon distention was reported to induce upper GI symptoms, inhibit gastric tone and accommodation, and delay gastric emptying (2, 31, 44), and is considered one of the constipation models commonly used in the study of upper GI motor activities. In the current study, in addition to testing the effect of mirtazapine on solid gastric emptying in normal dogs, RD was used to mimic fecal or gas stasis in the colorectal region. We found RD at 60-90 min substantially delayed gastric emptying from 90 min to 180 min, whereas, mirtazapine normalized RD-induced delayed in gastric emptying. Moreover, mirtazapine restored RD-induced reduced gastric tone and accommodation. The changes of gastric sensitivity and gastric emptying may explain the improvements of symptoms in patients with gastroparesis reported in the clinic practice. The normalization of RD-induced delay in gastric emptying and the acceleration of colon transit suggest that mirtazapine may have
a therapeutic potential for treating patients with symptoms attributed to both upper and lower GI motility disorders.

The effect of mirtazapine on colonic transit had not been studied before. It is known that many IBS patients display visceral hypersensitivity during colorectal distention (26, 30, 33) (In an earlier study we reported improvement on visceral hypersensitivity with the administration of mirtazapine in colonic sensitized rats (42); however, its effect on the colonic transit was not investigated. In the current study, we found mirtazapine accelerated colonic transit in normal dogs. The combined effects of mirtazapine on visceral hypersensitivity and colon transit may play a role in treating symptoms of IBS, especially in constipation-dominant IBS. It has to be mentioned that in the present study acceleration of colonic transit by mirtazapine was observed in normal dogs rather than a canine model of constipation.

Mirtazapine is an adrenoceptor antagonist with preferential affinity for presynaptic α_2 adrenoceptors and low affinity for α_1 adrenoceptors (10). Blockade of α_2 receptors by mirtazapine enhances both noradrenergic and serotonergic transmission (11). While the increase in noradrenaline potentially inhibits GI motility, mirtazapine may enhance GI motility due to the followings: 1) Blockage of α_2 receptors is expected to increase GI motility. In one previous study, it was shown that pre-treatment of mirtazapine antagonized the effect of clonidine (21), whereas clonidine is known to delay gastric emptying and induce constipation. 2) Enhancement of serotonin transmission due to blockade of α_2 receptors by mirtazapine increases 5-HT release.

Mirtazapine has a high affinity for serotonergic 5-HT$_2$ receptor subtypes, especially 5-HT$_{2A}$ and 5-HT$_{2C}$(9). 5-HT$_{2C}$ was known to regulate gastrointestinal motor activity and it was reported to stimulate phasic contractions and phase III activity in canine jejunum (19, 22). Antidepressants with a strong affinity for 5-HT$_{2C}$ receptor are reported to be associated with weight gain (13). Studies have shown that more than 10% of patients experience substantial weight gain during mirtazapine treatment and more than 10% patients have been noticed to have an increased of appetite (1). 3) Facilitation of noradrenaline transmission due to blockade of α_2 receptors by mirtazapine may further enhance serotonin transmission due to enhancement of 5-HT$_{1A}$ function (3, 32) mediated via α_2 heteroreceptors (12); blockage of α_2-adrenergic heteroreceptors located on the 5-HT terminals removes the tonic inhibition caused by endogenous norepinephrine. Furthermore, mirtazapine has been reported to block 5-HT$_3$ receptors with a potency similar to its effects on α_2 receptors (8, 18). Recently, a 5-HT$_{1A}$ receptor agonist has been shown to increase
esophageal motility and colonic migrating motor complexes (14, 15). Accordingly, we speculate that the prokinetic effects of mirtazapine observed in this study are attributed to increased release of 5-HT (mainly via the actions of 5-HT$_{2C}$ and 5-HT$_{1A}$) and the blockage of α_2 adrenergic receptors.

The ameliorating effects of mirtazapine on rectal distention-induced impairment in gastric motility (tone, accommodation, contractions and emptying) are believed to be attributed to both its prokinetic effects and its inhibitory effects on rectal distention-induced hypersensitivity. In the present study, mirtazapine blocked the rectal distention-induced inhibitory effects on gastric motility. In a previous study, mirtazapine was found to reduce rectal distention-induced gastric hypersensitivity (42).

Interestingly, while mirtazapine was found to have the prokinetic effect on both gastric emptying and colonic transit, it showed no effects on small intestinal contractions or transit in the normal dogs. In this study, intestinal transit was performed simultaneously with gastric emptying and gastric chyme emptied from the stomach was diverted out through the duodenal cannula. One might argue that this was not physiological because the intestine was not exposed to nutrients. Our rationale for such a special design was based on following considerations. Under normal physiological condition, intestinal transit is influenced by gastric emptying, i.e., how fast nutrients are delivered from the stomach to the small intestine. While designing the study, we anticipated that mirtazapine would alter gastric emptying and therefore, the effect of mirtazapine on gastric emptying would be a confounding factor while studying the effect of mirtazapine on intestinal transit. To eliminate this confounding factor, we decided to divert all gastric chyme and perform the test simultaneously with gastric emptying by ingesting saline mixed with phenol red to the small intestine via the duodenal cannula. Although gastric chyme was diverted, the small intestinal motility pattern observed during the test was similar to the postprandial pattern. The mechanisms underlying why mirtazapine had no effect on small bowel transit or contractions was not clear. It could be due to the differences in the coupling of α_2 receptors to adrenergic and serotonergic neurons in the small bowel. Further mechanistic studies are needed to investigate why there were differences in the effects of mirtazapine among different organs of the gut.

In conclusion, mirtazapine improves gastric emptying in healthy dogs, normalizes rectal distention-induced delay in gastric emptying and accelerates colon transit in healthy dogs.
Clinical studies are warranted to assess the effects of mirtazapine on GI motility and sensory functions in patients with functional GI diseases.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).
References

Figure 1: Effects of mirtazapine on solid gastric emptying. Mirtazapine significantly accelerated gastric emptying in the normal condition (P < 0.04). In addition, mirtazapine normalized delayed gastric emptying in dogs with rectal distention (P < 0.04).

Figure 2: Effects of mirtazapine on postprandial antral contractions in dogs under normal condition. Mirtazapine significantly enhanced antral contractions compared to the control session (P = 0.03).

Figure 3: Mirtazapine on gastric sensitivity to rectal distention. Rectal distention significantly reduced gastric tone and accommodation. Mirtazapine restored rectal distention induced reduced gastric tone (A) and accommodation (B) (P < 0.05).

Figure 4: Effects of mirtazapine on small intestinal motility. The small intestinal transit, was not different between the control and mirtazapine sessions (P = 0.3); neither, was there a difference in small intestinal contractions between the control and mirtazapine sessions (P = 0.2).

Figure 5: Effects of mirtazapine on colonic transit. Mirtazapine accelerated colonic transit 2 and 4 hours after the insertion of the radiopaque markers (P = 0.04).
Figure 1

![Graph showing gastric emptying over time for different conditions: Control, Mirt., RD, Mirt.+RD.]

* P < 0.04: RD vs. Mirt.+RD
P < 0.04: Control vs. Mirt.
Figure 2

Control Mirtazapine

Contractile Index (mmHg)

P = 0.03
Figure 3

(A) Fasting Gastric Volume (ml)

- Control
- Mirt
- RD
- RD+Mirt

- P < 0.01
- P = 0.03

(B) Gastric Accommodation (ml)

- Control
- Mirt
- RD
- RD+Mirt

- P < 0.01
- P = 0.012
Figure 4

A. First Appearance Time of Phenol Red (Min)

- Control
- Mirtazapine

P = 0.3

B. Contractile Index (mmHg)

- Control
- Mirtazapine

P = 0.2
Figure 5

- Control
- Mirtazapine

P = 0.04

- 2 Hours
- 4 Hours
- 6 Hours

Geometric Center

P = 0.04

P = 0.5