Mesenchymal Stromal Cell Therapy in liver disease; opportunities and lessons to be learnt?

Owen A¹, Newsome PN¹,².

1 NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham
2 Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham

Authors:
Dr Andrew Owen
National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research
5th Floor Institute of Biomedical Research
University of Birmingham
Vincent Drive
Birmingham
B15 2TT
UK

Corresponding author:
Professor Philip Newsome
National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research
AO was funded by an MRC Clinical Research Fellowship.
Abstract

End stage liver disease is responsible for 30,000 deaths per year in the US alone, and is continuing to increase every year. With liver transplantation the only curative treatment currently available, new therapies are in great demand. Mesenchymal Stem Cells (MSC) offer an opportunity to both treat liver inflammatory damage as well as reverse some of the changes that occur following chronic liver injury. With the ability to regulate both the innate and adaptive immune system, as well as both inhibit and promote apoptosis of effector inflammatory cells, there are numerous therapeutic opportunities for MSC in acute and chronic liver disease. This article critically appraises the potential roles of MSC in liver disease, as well as the barriers to their adoption into clinical practice.
Introduction

In the United States (US) there are approximately 30,000 deaths each year due to chronic liver disease, which is increasing at a rate of 3 percent per year (67). Currently the only curative treatment for end stage liver disease is transplantation, but there are over 15,000 patients on the waiting list for a liver transplant operation in the US and approximately 50% of these patients will never receive a transplant (92). In the United Kingdom (UK) the problem is similar with 2 percent of all deaths being due to liver disease and whilst all other leading causes of death are decreasing, those from end stage liver disease have increased by 20% (69, 113). Notably liver disease is the leading cause of premature death in the UK, leading to the loss of a greater number of life years than many of the other causes. Clearly novel therapeutic options are needed to reduce the global impact of liver diseases; mesenchymal stem cells (MSC) are one potential therapy which offer great promise.

MSC are multipotent, self-renewing cells of mesodermal origin that have the potential to differentiate down chondrocytic, osteocytic and adipocytic lineages amongst many others (78). MSC exist in a number of tissues, albeit in low numbers (87), and have traditionally been isolated on their ability to adhere to tissue culture plastic and proliferate (28). This review will cover the possible roles of MSC in liver disease along with their potential pitfalls.

The Evolution of a Bone Marrow Derived Stem Cell

The history of MSC and the development of hypotheses regarding their existence can be dated back over 100 years, indeed a description of bone marrow stroma creating an environment in which haematopoietic precursors were able to differentiate was first
suggested as far back as 1908 by Maximov (27, 61). Experiments in the 1960s by Tavassoli confirmed the osteogenic potential of bone marrow, but limitations with these experiments meant it was not possible to identify which cellular constituents within the bone marrow were responsible (98). Further work by Friedenstein demonstrated that a rare population of bone marrow cells with fibroblastic properties were responsible and the term colony forming unit fibroblast (CFU-F) was used to describe them (99). These cells have subsequently been shown to be multipotent (71) but their complex interplay with haematopoietic stem cells has only recently been demonstrated (62). The term MSC was not used until 1991 when it was introduced by Caplan (16), and the idea of a stem cell niche within the bone marrow was further developed by the discovery of a rare, self-renewing population of cells (87), leading to an ongoing debate regarding the correct criteria with which to judge MSC. This is due to their mixture of stem and stromal like properties, although the ability to self-renew and tri lineage differentiation potential (osteogenic, chondrogenic, adipogenic) appear in most definitions (13, 22).

The definition of MSC in humans has focused on their adherence to tissue culture plastic, multi-potency and expression profile of specific cell surface antigens (Table 1). As regards the latter a population of putative human MSC should be greater than 95% positive for positive antigens and contain less than 2% positivity for negative antigens (22, 39). In mice however, CD105, CD90 and VCAM-1 have been identified as relevant markers for MSC purity (Table 1), although successful isolation of MSC from murine bone marrow has proven challenging (19, 74) leading to the isolation of markedly heterogeneous cell populations and potentially inconsistent results in pre-clinical studies. Prospective isolation of MSC sub-populations using cell sorting techniques has been demonstrated in both mice and humans.
Highly purified mouse MSC obtained from bone marrow by sorting on PDGFRα and Sca-1 expression (with depletion of cells expressing Ter119 and CD45) demonstrate tri-lineage differentiation and self-renewal (66). In humans and mice, MSC can also be isolated based on their LNGFR⁺ (CD271), THY-1⁺, VCAM-1⁹⁺ (59) expression profile and again have been shown to undergo tri-lineage differentiation and self-renewal. The intermediate filament protein nestin has also been shown to identify a population of perivascular MSC which are able to support the haematopoietic niche (62) and may also be used as a marker for prospective isolation. Notably the overlap between PαS and Nestin positive cells is not complete, with the majority of nestin⁺ cells not expressing Sca-1, suggesting some phenotypic differences (77).

MSC and immunomodulation

The number of studies looking at MSC in the laboratory and clinical setting has increased dramatically over the past decade due to their pleiotropic actions in respect of regeneration and immunomodulation. Their immunomodulatory properties apply to both the adaptive and the innate immune systems and are seemingly mediated by a combination of migration to inflamed tissues as well as by remote signaling (103, 109, 117).

Regarding the innate immune system MSC can inhibit the maturation of dendritic cells (18, 44, 80), as well as decrease their expression of MHC class 1, MHC class 2 and other co-stimulatory molecules, thus reducing their antigen presenting ability. It has been demonstrated in vitro that MSC can inhibit the release of TNFα by dendritic cells via a PGE₂ dependent mechanism and also stimulate plasmacytoid dendritic cells to increase their
production of IL10 (2). This reduction in inflammation is one of the mechanisms proposed for the success of MSC in graft versus host disease (55, 63). MSC also have an inhibitory effect on Natural Killer (NK) cells likely due to the release of soluble factors such as IDO, TGF-β, PGE2 and IL10 (Table 2 and Figure 1). This inhibitory effect has been shown to prevent activation of NK cells by IL2, however once NK cells are activated the inhibitory effect of MSC is only partial, measured by reductions in IFNγ secretion by NK cells (95). MSC can be induced to increase their production of MHC class 1 and 2 by activation using IFNγ, which has been shown to protect MSC from NK induced apoptosis (95).

Regarding the adaptive immune system, MSC are able to inhibit T-cell proliferation and their activation, however the precise mechanisms by which this is achieved are unclear. Early cell cycle arrest of T Cells may have a role in their suppressive action, and MSC have been shown to inhibit cyclin D2 and upregulate p27Kip1 and although the mechanism is not clear, this process is independent of MHC expression (33). The suppressive activity of MSC is not however limited to a specific subset of T cells, and has also been shown to occur during CD40L and IL4 stimulation of B cells, which likely reflects the role of cyclin D2 in driving B cell proliferation (82, 118). Notably, an inflammatory environment is required for MSC to exert their immune-suppressive effect as otherwise MSC have been shown paradoxically to exert a pro-inflammatory effect on T-cells (68).

As well as human and mouse MSC possessing phenotypically different expression profiles, there are also differences between strains of mice and rats with respect to their mode of immunomodulation, with BALBc mice predominantly secreting inducible Nitric Oxide (iNOS) as opposed to Indoleamine-2,3-dioxygenase (IDO) (9, 35). Human MSC have also been
shown to favour IDO as their mechanism of immunosuppression (26) thus it is critical to choose the correct strain of mice for MSC isolation when carrying out studies with a translational objective.

MSC in Liver Disease

The role of MSC has been studied in a range of different settings of liver disease with widely varying actions reported, ranging from reduction of oxidative stress, paracrine trophic signals to hepatocytes, to suppression of immune responses and reduction of liver fibrosis. The majority of the literature regarding MSC usage in patients with liver disease is made up of either observational studies or case series. Table 3 summarises some of the key controlled trials carried out in this area.

Acute liver failure/Acute on chronic liver failure

The rapid onset of liver failure in patients without pre-existing liver disease is relatively uncommon but has considerable morbidity and mortality, despite improvements in critical care provision and liver transplant surgery (1). Causes of acute liver failure vary between the developing world, where viral infection is the major cause, and the developed world, where drug induced liver injury is more common (12). Drug induced liver injury is responsible for 50% of cases of acute liver failure in the United States (84) and Europe where the main drug responsible is acetaminophen (11).
In pre-clinical models of acute liver damage such as carbon tetrachloride (CCl₄) and concanavalin A (Con A) MSC have been shown to reduce liver injury (46, 120), although the mechanisms by which this is achieved are complex and not fully understood. A reduction in pro-inflammatory cytokines, in particular TNFα, IFNγ and IL4 may be responsible and in some studies appears to be greater with repeated dosing of MSC (17). In parallel with the reduction in inflammatory cytokines a reduction in hepatocyte apoptosis has also been demonstrated using the TUNEL assay (48). Oxidative stress plays a role in a number of liver injury models including CCl₄ induced liver injury and hepatic ischaemia reperfusion. In CCl₄ induced liver injury MSC have been shown to reduce oxidative stress, with parallel in vitro experiments demonstrating an ability to act as a free radical scavenger reducing the amount of reactive oxygen species available (53). In acetaminophen induced liver injury, damage can be reduced by inhibition of c-Jun N-Termin al Kinase (JNK) (34), which MSC have been demonstrated to achieve along with reductions in hepatic JNK and TNFα and maintenance of levels of hepatic glutathione (89).

MSC conditioned media (MSC-CM) and MSC based extracorporeal membranes (MSC-EM) appear to be as effective, if not more so, than MSC infusions alone in certain models. In D-galactosamine induced liver injury models, MSC-EM appear to show a greater reduction in hepatocyte death and reversal of fulminant hepatic failure, followed by MSC-CM with cellular infusion showing the lowest effect (73). However, MSC-CM contains over 50 cytokines and it is yet to be elucidated what combination of these is most effective in the treatment of liver disease. The inability to thus identify a defined product is likely to be problematic for regulators when trying to translate this finding into clinical practice.
In the developing world viral hepatitis is the most common cause of acute liver failure, mainly due to hepatitis A (49, 93) and E (39) although hepatitis B has also been shown to cause acute on chronic liver failure (91). Early clinical trials in this latter setting have shown the potential benefit of MSC therapy (119) with a reduction in ascites volume as well as improvements in liver function and serum albumin level, although these studies were not formal clinical trials with identified primary end-points, and thus need confirmation in future studies. The mechanism by which MSC may exert their beneficial effects in this setting are also not clear and requires study (94). Of note, hepatitis B virus is able to infect MSC, although the implications of this are not entirely clear (58).

Chronic Liver Disease

Liver fibrosis is the common final result of most chronic liver diseases, and whilst once thought of as an irreversible phenomenon, there is optimism that it may be amenable to specific anti-fibrotic therapies (29). Cirrhosis, the most severe manifestation of liver fibrosis, represents the consequence of stellate cell activation following chronic liver injury and the deposition of extracellular matrix (ECM) proteins and collagen (30). Fibrosis can co-exist with ongoing inflammatory injury and thus MSC have been explored as both anti-inflammatory and anti-fibrotic therapies in this setting. Activation of stellate cells contributes to fibrogenesis and MSC induced initiation of stellate cell apoptosis has been suggested as a potential treatment for hepatic fibrosis (72) (Figure 3).

In pre-clinical trials MSC have been shown to improve liver function in models of cirrhosis and decrease expression of α-SMA, TGF-β1 and type 1 collagen (47). Activated stellate cells...
express the receptor P75 which triggers apoptosis in response to Nerve Growth Factor (NGF) probably by induction of the C-Jun N-Terminal Kinase and NF-kB pathways. MSC may increase stellate cell apoptosis via the release of NGF (57). Matrix Metalloproteinase 9 (MMP9) is a protease known to break down the ECM and MSC have been shown to increase the expression of MMP9 along the fibrous septa in mouse models leading to regression of fibrosis (37). As an explanation for their regenerative effect in liver fibrosis it has been proposed that bone marrow derived stem cells may migrate to injured liver and differentiate into hepatocytes (70) however alternative mechanisms seem more likely. A key criticism of the pre-clinical work carried out using MSC in liver fibrosis/cirrhosis is that MSC were often administered at or during the injury period, and thus there is uncertainty as to whether they are having an anti-inflammatory or anti-fibrotic effect. With little mechanistic insight provided by the current pre-clinical work, further study focusing on the way in which MSC may exert their effects in these models is required.

One clinical trial in patients with liver cirrhosis demonstrated an increased liver volume in patients treated with MSC (51), however this was an observational study and a subsequent randomised trial showed no beneficial effects of MSC therapy in this patient group (65). A recent review of trials using MSC in end stage liver disease has demonstrated the paucity of good quality trials with very few randomised controlled trials in these patients (60). There is a need for good quality open label randomised trials to be carried out without predefined end points in order to better answer the question of the benefit of MSC in end stage liver disease.
In clinical trials it has also been suggested that MSC therapy may improve liver function in patients with end-stage liver disease due to hepatitis C virus as supported by a down-regulation in fibrosis markers and pro-inflammatory cytokines (88), alongside an up-regulation of anti-inflammatory cytokines. MSC have also been shown to improve liver function in patients with cirrhosis secondary to chronic hepatitis B infection (75), with significant improvements in liver function tests when compared with antivirals alone, possibly by increasing the number of Treg (FoxP3⁺) cells and decreasing the number of Th17 (Il-17 T-helper) cells (114), hence altering the Treg/Th17 ratio. Moreover, some studies suggest that the MSC secretome may be as effective as MSC themselves, raising questions about their mechanism of action and possibly negating the risk of stem cell infusion (7).

Clearly there is considerable further work to explore the mechanisms by which MSC may be beneficial in fibrotic liver disease with immune mediated interactions being the key focus of investigation.

Ischaemia Reperfusion and Transplantation

Ischaemic liver injury is an under recognised clinical condition occurring at its most dramatic during the ischaemia reperfusion injury accompanying liver transplantation (54), as well as during episodes of hypo-perfusion such as cardiac arrest, trauma and sepsis (14). Recruitment of CD4⁺ and CD8⁺ T cells coupled with natural killer (NK) and γδT cells occurs early in ischaemia reperfusion (IR) injury and is a key pathogenic mechanism in the development of the immune-mediated liver injury (105) seen in this setting. In pre-clinical studies inhibition of leucocyte adhesion significantly reduces liver injury in the setting of transplant induced ischaemia reperfusion injury (100). Hence, MSC which have a potent
ability to suppress T cell activity and proliferation have been proposed as therapeutic adjuncts in this setting (Figure 2).

Hepatocyte transplantation has been carried out in both acute liver failure (96) and inborn errors of metabolism (21) with mixed results. Failure of sufficient engraftment and rejection of transplanted hepatocytes restricts the clinical utility of this approach, and thus an adjunctive role of MSC has been proposed. Notably, MSC have been shown to prolong hepatocyte survival both \textit{in vitro} and \textit{in vivo} as well as maintain their function (45, 104). MSC can also down regulate the number of TUNEL positive hepatocytes in partial hepatic injury models, as well as increasing the number of proliferating hepatocytes (104), and thus may prolong hepatocyte retention after transplantation. MSC have also been shown \textit{in vitro} to differentiate into hepatocytes (6, 70) and/or fuse with hepatocytes adopting their phenotype (101). Whilst initially thought to be a mechanism by which MSC are able to support tissue repair and regeneration, the low numbers of such cells suggests that this function of MSC is not the most important feature, with inhibition of apoptosis a more likely explanation.

In pre-clinical studies of reduced size liver transplantation MSC have been show to provide trophic support for donor livers and improve recipient survival, although the exact mechanisms were not studied (23). Notably, infusions of MSC which had been transfected with an HGF adenovirus vector in order to stimulate their production of HGF have been shown to further improve survival in the setting of small for size liver transplantation, although the relative contributions of HGF and/or MSC in this setting require further study.
MSC have also been shown to significantly reduce AST and ALT as well as decrease the number of apoptotic hepatocytes as assessed by the TUNEL assay in a model of hepatic IR (48). As the MSC in this study adhered to the peri-portal region and appeared to have reduced the number of apoptotic hepatocytes it seems likely that a paracrine effect is responsible for this, and reduction in TNFα and phospho-JNK by MSC are possible mechanisms.

Tolerogenic properties of MSC have been investigated in a rat model of liver transplantation. Following orthotopic liver transplantation MSC infusion has been shown to increase tolerance to donor organs by suppressing T-Cell levels, as well as increasing the number of circulating CD4+CD25+FoxP3+ regulatory T Cells (108, 111). Clinical translation of this effect is yet to be demonstrated however, although studies in kidney transplantation look encouraging (76, 83, 97). Neutrophils are a key component of the inflammatory insult seen following ischaemia reperfusion injury. MSC have been shown to exert an effect on neutrophils. With reciprocal modulation of the mitochondrial proteins of the Bcl2 family; Bax and MCL-1, MSC can inhibit neutrophil apoptosis, even at a low ratio (1:500) (79). In co-culture experiments MSC have been shown to increase the amount of phosphorylated STAT3 via secretion of IL-6, a likely explanation for their ability to inhibit neutrophil apoptosis.

Delivery of Cellular Therapy and Engraftment at Target Sites

A number of routes of administration have been proposed for the delivery of MSC in liver disease. Whilst the classic routes of intravenous infusion (IV) or subcutaneous injection (SC)
are more familiar, other routes such as intra-arterial (IA) and intra-portal injection (IP), either via ultrasound guidance or at time of surgery have also been investigated (50). The proposed advantage of the IP route over other routes in liver disease is the ability to circumvent the lungs, an area in which a large proportion of IV MSC will ultimately accumulate (8). Choice of route will also be determined by a balance between what is clinically practical, hence the preference for systemic administration.

Homing and engraftment are important concepts when considering delivery of MSC to specific target organs such as the liver. We have demonstrated that MSC use CD29 and CD44 to mediate adhesion to sinusoidal endothelium in the CCl4 mouse model of liver injury, thus increasing engraftment (4). Although human MSC have also been shown to express CCR7, CCR9, CXCR4, CXCR5 and CXCR6 (38), receptors which are involved in homeostatic leucocyte tracking, it remains unclear whether these are important in homing to injured tissue. Stimulating MSC to upregulate receptors used for engraftment may be one strategy to increase and target MSC homing. MSC cultured under standard conditions quickly lose CXCR4 expression, however when cultured under hypoxic conditions CXCR4 expression is increased and may aid homing to tissues expressing SDF-1α such as bone marrow and ischaemic tissues (41). Cytokine stimulation in haematopoietic stem cells has been shown to increase expression of receptors responsible for engraftment and may represent another potential strategy in MSC therapy.

Whilst the importance of homing/engraftment of MSC to the injured liver is assumed to be necessary, recent work in liver fibrosis and other clinical settings such as graft versus host disease has questioned this premise. Encapsulated MSC (eMSC) demonstrated a superior
effect when compared with intravenously administered MSC, which may be a reflection of prolonged survival of the eMSC in vivo (117). This work suggests that MSC may exert their effects through paracrine signaling or cell contact with circulating inflammatory cells such as myeloid derived stromal or dendritic cells (18).

Techniques enabling the tracking of MSC will be important so as to better understand their in vivo action. One early technique for tracking cell distribution was Magnetic Resonance Imaging (MRI), of supermagnetic iron oxide (SPIO)-labelled cells (107). There is evidence however, that the labelling process itself, magnetoporation, can inhibit MSC differentiation and migration limiting the usefulness of this technology (90). One alternative to SPIOs are manganese oxide nanoparticles which have been used to track MSC in mouse models of glioblastoma (40). Radionucleotide reporter gene imaging using single photon emission computed tomography (SPECT) is a potential alternative to MRI, however it is limited by the spillover of radiation to non-labelled cell types and the short time frame with which imaging is possible due to radionucleotide decay (43).

Clinical Translation of MSC Therapy

Whilst MSC have potentially broad reaching clinical applications in liver disease they are yet to demonstrate unequivocal evidence of efficacy. This predominantly reflects the lack of robust phase 2/3 clinical trials performed with the rigour required by regulators to meet pre-defined primary end-points.
As a rare population of cells MSC require extensive culture expansion in order to yield enough cell numbers for a clinical effect, which raises concern about loss of function (31) and potentially transformation. Undeniably over-expansion of MSC in culture reduces their ability to immunosuppress subsequently, and thus regimens defining maximal expansion before use are required, along with robust release assays which are predictive of in vivo functionality. Concerns about transformation of MSC in culture pertain only to murine studies (3), whereas human studies do not suggest any evidence of transformation. Indeed, initial evidence of oncogenesis was retracted as it was later shown to be due to cell line contamination (32). Longer term studies of patients receiving human MSC also demonstrated the lack of any long-term engraftment, providing further reassurance on this matter (106).

Of note, MSC require exposure to inflammation to induce their immunomodulatory actions, whereas in a quiescent environment they may adopt a pro-inflammatory phenotype (5, 112). The desire therefore to prime MSC to enhance their function poses a dilemma, between additional logistical and financial challenges at the expense of potentially greater efficacy.

Inflammatory bowel disease is another group of conditions caused by immune dysregulation in which MSC may have potential benefit, however so far only small case series have been performed. One study has demonstrated an improvement in mucosal inflammation (56), and another study demonstrated improvement in half of the patients and deterioration in the others (24) following administration of MSC.
Tumourigenicity

Tumour promotion has been considered as a potential risk with MSC therapy, as theoretically immunosuppression could serve to encourage tumour initiation, and MSC secrete angiogenic factors such as VGEF and PDGF which may serve to promote tumour growth (10). The possibility that MSC can give rise to tumour associated fibroblasts (TAF) has also been considered in the literature (64), although MSC therapy in the setting of hepatocellular carcinoma have been shown to both inhibit tumour growth via downregulation of Wnt signaling pathway associated factors, whilst promoting tumour growth by secretion of trophic factors in other models (36). The heterogeneity in the literature is possibly a reflection of transformation of MSC, which is found more commonly in the murine setting, especially after isolation using plastic adherence techniques (52).

Two reports of spontaneous transformation of human MSC upon transplantation (85, 86) led to the suspension of several human PA-MSC clinical trials although both reports (85, 86) were subsequently retracted as rigorous analysis revealed that the PA-MSC used in both studies were cross contaminated by the human HT1080 fibrosarcoma cancer cell line (20, 102). To date, only one report has ever demonstrated that a human adult-tissue derived PA-MSC can spontaneously transform - Wang and colleagues generated PA-MSC lines from over 100 donors, and of these lines one donor PA-MSC line formed tumours in NOD/SCID immune-compromised mice (110). This cell displayed an abnormal (non-ISCT) cell surface cytometry profile of CD133^+, CD90^low, CD105^-, VEGFR2^+ - whereas normal PA-MSC express high levels of CD90^+ and CD105^+, but do not express CD133 or VEGFR2 in culture. Karyotyping showed chromosome aneuploidy and these cells expressed a high level of telomerase activity, compared with typical PA-MSC. As a result of this study, every clinical
grade batch of PA-MSC currently undergoes karyotyping and flow cytometry as batch release criteria.

More robust data using rodent PA-MSC have raised concerns that the use of rodent MSC can lead to cancer in certain rodent models either directly or through promotion of existing early stage cancer. Miura et al showed that murine MSC could bypass senescence and passage 65 MSC injected into mice formed fibrosarcomas in multiple organs. Raising additional concerns, Breitbach et al (15) reported that murine PA-MSC led to ectopic bone formation in infarcted mouse hearts. Foudah et al report that rat MSC (rMSC) exhibited genomic instability and tumourigenicity in culture (25), leading to the conclusion that rat MSC may not be a good model for exploring the therapeutic potential of human MSC. Jeong et al extended these findings, showing that murine MSC exhibit genetic instabilities at low passages and lead to tumours in the heart and hindlimbs of mice (42). Chromosomal analysis revealed that culturing these normal looking, tumorigenic mouse PA-MSC cause multiple chromosomal abnormalities. These reports must be taken seriously, however as the increased susceptibility of inbred rodent cells to transformation is well described these findings may not be surprising, and when considering human cells it should be noted that they are reportedly resistant to oncogenesis. The Weinberg lab have described that tumorigenic transformation of normal human fibroblasts requires the mutation of 6 different signaling pathways (81), whereas mouse fibroblasts require only 2 pathway mutations (p53 and Raf) to bypass senescence and transform (81).

Nonetheless, careful monitoring for adverse effects of PA-MSC therapies in non-clinical and clinical settings continues to support an acceptable safety profile for PA-MSC with regard to
proliferation or ectopic tissue formation. Finally, recent autopsy data from GvHD clinical trial patients that received PA-MSC between 2002 and 2007, revealed no ectopic tissue, neoplasms or donor derived DNA (106).

Conclusions

MSC have been shown to reduce immune mediated liver injury, oxidative stress and stimulate liver regeneration in a range of pre-clinical models, but there still remains a lack of detailed studies delineating the mechanisms by which MSC achieve their effects. Whilst the clinical translation of these effects is yet to be confirmed in large scale randomised trials there are an increasing number of such studies underway. These studies will hopefully shed light on which clinical indications are appropriate as well as provided added insights on dosing regimen and safety profile.
References

the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. *Cytotherapy* 11: 570-583, 2009.

mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. *Cytotherapy* 11: 68-78, 2009.

95. Spaggiari GM. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. *Blood* 107: 1484-1490, 2006.

Table 1 – Presence and absence of surface markers required for identification of human and mouse MSC

<table>
<thead>
<tr>
<th>Surface Antigens</th>
<th>Human Positive</th>
<th>Mouse Positive</th>
<th>Human Negative</th>
<th>Mouse Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD105</td>
<td>CD105</td>
<td>CD79α or CD19</td>
<td>CD45</td>
<td></td>
</tr>
<tr>
<td>CD90 (Thy1)</td>
<td>CD90</td>
<td>CD45</td>
<td>Ter119</td>
<td></td>
</tr>
<tr>
<td>CD73</td>
<td>VCAM</td>
<td>CD34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD71</td>
<td>PDFRα</td>
<td>CD14 or CD11b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD44</td>
<td>Sca1</td>
<td>HLA-DR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GD2</td>
<td></td>
<td>CD86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNGFR (CD271)</td>
<td></td>
<td>CD80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytokine</td>
<td>Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nerve Growth Factor (NGF)</td>
<td>Binds to P75 on hepatic stellate cells and triggers apoptosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin 6 (IL-6)</td>
<td>Inhibits neutrophil burst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inducible Nitric Oxide Synthetase (iNOS)</td>
<td>Inhibits CD4$^+$ T-Cell Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indolamine 2,3 dioxygenase (IDO)</td>
<td>Inhibits CD4$^+$ T-Cell Function, Inhibits resting Natural Killer cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostaglandin E$_2$ (PGE$_2$)</td>
<td>Inhibits CD4$^+$ T-Cell Function, Inhibits resting Natural Killer cells, inhibits differentiation of monocytes into myeloid cells, inhibits TNF production by dendritic cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatocyte Growth Factor (HGF)</td>
<td>Inhibits CD4$^+$ T-Cell Function, inhibits CD8$^+$ T-Cell cytotoxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transforming Growth Factor β (TGF-β)</td>
<td>Inhibits CD4$^+$ T-Cell Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Leucocyte Antigen G5 (HLA-G5)</td>
<td>Inhibits resting Natural Killer cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Design</td>
<td>Number of patients treated</td>
<td>Aetiology of liver failure</td>
<td>Type of MSC</td>
<td>Route of Administration</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Acute on Chronic Liver Failure</td>
<td>Shi et al, Stem Cells Translational Medicine 2012</td>
<td>Open labelled non-randomised controlled trial</td>
<td>24</td>
<td>Hepatitis B infection</td>
</tr>
<tr>
<td>Peng et al, Hepatology 2011</td>
<td>Non-randomised controlled trial</td>
<td>57</td>
<td>Hepatitis B infection</td>
<td>Autologous BM MSC</td>
</tr>
<tr>
<td>Fibrosis / Cirrhosis</td>
<td>Zhang et al, Journal of Gastroenterology and hepatology</td>
<td>Open labelled non-randomised controlled trial</td>
<td>30</td>
<td>Chronic Hepatitis B infection</td>
</tr>
<tr>
<td>Year</td>
<td>Study</td>
<td>Study Type</td>
<td>Sample Size</td>
<td>Condition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2012</td>
<td>Salama et al, Stem Cell Res Therapeutics 2014</td>
<td>Randomised controlled trial</td>
<td>20</td>
<td>Hepatitis C infection</td>
</tr>
<tr>
<td></td>
<td>Mohamadnejad et al, Liver International 2013</td>
<td>Randomised controlled trial</td>
<td>15</td>
<td>Mixed</td>
</tr>
<tr>
<td></td>
<td>Xu et al, Journal of Gastroenterology and hepatology 2014</td>
<td>Randomised controlled trial</td>
<td>20</td>
<td>Hepatitis B infection</td>
</tr>
</tbody>
</table>
Figure 1 - Immune cells influenced by MSC

MSC exert an effect on a range of cells involved in the immune response. There is a direct effect exerted on CD4⁺, CD8⁺, γδ T-Cells, FoxP3⁺ T-reg Cells, Neutrophils and Monocytes whilst they also exert an indirect effect on NK Cells via their action on dendritic cells.

Figure 2 - Mechanisms of MSC action in liver inflammation/ischaemia

MSC are able to inhibit CD4, CD8 and γδ T lymphocytes using a variety of cytokines including LHA-G5, IDO, HO1, TGFβ and PGE₂. MSC may also differentiate into hepatocytes, although this occurs in low numbers. Hepatocyte apoptosis is inhibited by MSC secreting HGF and finally MSC may adhere to hepatocytes and reduce TNFα and phosphor-JNK.

Figure 3 - Mechanisms of MSC action in fibrotic liver disease

MSC can exert effects on hepatic stellate cells by secreting NGF which binds to p75 expressed on activated stellate cells. This leads to stellate cell apoptosis and therefore a reduction in the stellate cell secreted ECM. MSC may also secret MMP9 which has a direct effect cleaving collagen in the ECM. MSC also act via an unknown mechanism to reduce the secretion of stellate cell αSMA and TGFβ.

(Stock images provided by Servier medical for use under the Creative Commons Attribution 3.0 Unported License)
Figure 1 - Immune cells influenced by MSC

MSC exert an effect on a range of cells involved in the immune response. There is a direct effect exerted on CD4⁺, CD8⁺, γδT-Cells, FoxP3⁺ T-reg Cells, Neutrophils and Monocytes whilst they also exert an indirect effect on NK Cells via their action on dendritic cells.
MSC are able to inhibit CD4, CD8 and γδ T lymphocytes using a variety of cytokines including LHA-G5, IDO, HO1, TGFβ and PGE₂. MSC may also differentiate into hepatocytes, although this occurs in low numbers. Hepatocyte apoptosis is inhibited by MSC secreting HGF and finally MSC may adhere to hepatocytes and reduce TNFα and phospho-JNK.
Figure 3 - Mechanisms of MSC action in fibrotic liver disease

MSC can exert effects on hepatic stellate cells by secreting NGF which binds to p75 expressed on activated stellate cells. This leads to stellate cell apoptosis and therefore a reduction in the stellate cell secreted ECM.

MSC may also secret MMP9 which has a direct effect cleaving collagen in the ECM. MSC also act via an unknown mechanism to reduce the secretion of stellate cell αSMA and TGFβ.

(Stock images provided by Servier medical for use under the Creative Commons Attribution 3.0 Unported License)