Nkx2.2 is expressed in a subset of enteroendocrine cells with expanded lineage potential

Stefanie Gross¹, Dina Balderes¹, Jing Liu², Samuel Asfaha³, Guoqiang Gu², Timothy C. Wang³,⁴ and Lori Sussel¹,*

¹ Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA; ² Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; ³ Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York, USA; ⁴ Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA;

* Corresponding author: Lori Sussel, PhD; Columbia University, Department of Genetics and Development, 1150 St. Nicholas Avenue, Room 607B, New York, NY 10032; Tel: 212-851-5115; E-mail: lgs2@columbia.edu

Author Contributions:
S.G. and L.S. conception and design of research; S.G., D.B., J.L. and S.A. performed experiments; S.G. analyzed data; S.G. and L.S. interpreted results of experiments; S.G. prepared figures; S.G. drafted manuscript; S.G., D.B., J.L., S.A., G.G., T.C.W. and L.S. edited and revised manuscript; S.G. and L.S. approved final version of manuscript. G.G. provided material support.

Running Head:
Nkx2.2 Expressing Multipotent Cells in the Intestine

Keywords: Bmi1; Enteroendocrine Cells; Lgr5; Nkx2.2; stem cells
Abbreviations:

- Bmi1, Bmi1 polycomb ring finger oncogene; CBC, crypt base columnar cell;
- Chga, chromogranin A; DAPI, 4′-6-diamidino-2-phenylindole; DBA, *Dolichos biflorus* agglutinin; Dll1, delta-like 1; Dclk1, doublecortin-like kinase 1; DSS, dextran sodium sulfate; Fabp2, fatty acid binding protein 2; Lgr5, leucine-rich repeat containing G protein-coupled receptor 5; LPS, lipopolysaccharide; Ngn3, neurogenin 3; Nkx2.2, NK2 homeobox 2; TA, transit-amplifying.
There are two major stem cell populations in the intestinal crypt region that express either Bmi1 or Lgr5; however, it has been shown that other populations in the crypt can regain stemness. In this study, we demonstrate that the transcription factor Nkx2.2 is expressed in enteroendocrine cells located in the villus and crypt of the intestinal epithelium and is co-expressed with the stem cell markers Bmi1 and Lgr5 in a subset of crypt cells. To determine whether Nkx2.2-expressing enteroendocrine cells display cellular plasticity and stem cell potential, we performed genetic lineage-tracing of the Nkx2.2-expressing population using $Nkx2.2^{Cre/+};R26RTomato$ mice. These studies demonstrated that Nkx2.2+ cells are able to give rise to all intestinal epithelial cell types in basal conditions. The proliferative capacity of Nkx2.2-expressing cells was also demonstrated in vitro using crypt organoid cultures. Injuring the intestine with irradiation, systemic inflammation and colitis did not enhance the lineage potential of Nkx2.2-expressing cells. These findings demonstrate that a rare mature enteroendocrine cell subpopulation that is demarcated by Nkx2.2 expression, display stem cell properties during normal intestinal epithelial homeostasis, but is not easily activated upon injury.
The mammalian intestine consists of a small and large intestine that are each lined by a single-cell epithelium. The epithelium of the small intestine is organized into crypt and villus compartments, whereas the large intestine only contains crypts. Crypts invaginate into the underlying mesenchyme and contain stem cells and proliferating transit-amplifying (TA) cells. Villi protrude into the gut lumen and consist of differentiated cell types. The intestinal epithelium contains five terminally differentiated cell populations: absorptive enterocytes and secretory Paneth, goblet, tuft and enteroendocrine cells. The hormone-producing enteroendocrine cells represent only 1% of the cells in the intestinal epithelium, but express at least fifteen different types of hormones (23, 29) and represent the largest endocrine system in the body. Most enteroendocrine cells can be identified by chromogranin A (Chga) expression.

The intestinal epithelium contains a high self-renewal capacity. Turnover time is about 4-5 days and is the fastest turnover rate in mammals (9, 39). Stem cells in the crypt give rise to TA cells that differentiate into the absorptive and secretory epithelial cell types around the crypt-villus border. During differentiation, Paneth cells migrate down towards the crypt base, whereas the other differentiated cell types migrate up towards the villus tip, where they undergo apoptosis and are shed into the gut lumen (39).

A significant number of studies have identified and characterized two major stem cell populations in the crypt of the small intestine. The highly proliferating crypt base columnar cells (CBC) are located at the base of the crypt between the
Paneth cells and are marked by the leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) (4, 8). The other stem cell population is found at or near the +4 position, is slow cycling and label-retaining, and is demarcated by the expression of the polycomb ring finger oncogene Bmi1 (3, 28, 31). Recently, however, Bmi1 transcripts were also detected in Lgr5+ CBCs (25). Interestingly, interconversion between the two Lgr5+ and Bmi1+ stem cell populations has been demonstrated (36), allowing the intestine to regenerate in the absence of Lgr5+ cells (38). Furthermore, several studies have shown that there is additional plasticity in the intestine. Label-retaining secretory progenitors committed to the Paneth or enteroendocrine cell lineages, as well as Dll1 (delta-like 1)-expressing secretory progenitor cells can gain stemness upon intestinal damage (7, 40). In addition, label-retaining Paneth cells can proliferate and begin to express the stem cell marker Bmi1 (30) in injury conditions. Similarly, enteroendocrine cells in the crypt express stem cell markers (33) and can be activated after irradiation *in vitro* (41).

The homeodomain transcription factor Nkx2.2 is expressed in the pancreas, ventral neural tube and intestine. Nkx2.2 is required for cell fate decisions in the pancreatic islet and cell patterning in the ventral neural tube (6, 35). In the intestine, expression of Nkx2.2 is first detected at E15.5 and maintained throughout adulthood, where Nkx2.2 is expressed in enteroendocrine cells in the crypt as well as in the villus (11, 42). In the crypt, some Nkx2.2+ cells co-express the enteroendocrine progenitor cell marker Ngn3 (42), a gene that is essential for the development of intestinal and pancreatic endocrine cells (14, 18). Nkx2.2 is
also critical for determining cell fate decisions of enteroendocrine cell lineages in
the intestine downstream of Ngn3; Nkx2.2 null mice display a reduction in most
enteroendocrine cell populations with the exception of ghrelin (Ghrl) positive
cells, which are up-regulated (11, 42). Other intestinal epithelial cell types are
unaffected by the loss of Nkx2.2 (11). Lineage-tracing analysis showed that all
enteroendocrine cell populations derive from Ngn3+ cells. Furthermore, Ngn3
lineage-tracing revealed that Ngn3 is expressed in a rare multipotent cell that can
give rise to whole crypt-villus units in addition to rare single Paneth and goblet
cells (32). In this study, we demonstrate that a subpopulation of Nkx2.2+
enteroendocrine cells expresses the stem cell markers Bmi1 and Lgr5. Lineage-
tracing with Nkx2.2 confirms that a rare subset of Nkx2.2-expressing mature
enteroendocrine cells has expanded lineage potential, but cannot be activated
upon intestinal injury.

MATERIALS AND METHODS

Animals

Mice were housed and treated in accordance with the animal care protocol
(AAAG3206) approved by Columbia University’s Institutional Animal Care and
Use Committee (IACUC). Mice were maintained on a C57BL/6J background (The
Jackson Laboratory). Lgr5^{EGFP/+} (B6.129P2-Lgr5^{tm1(cre/ERT2)Cle}/J) (4), Bmi1^{EGFP/+}
(kindly provided by Prof. Dr. Weissman) (17) and R26RTomato (B6.Cg-
Gt(ROSA)26-Sor^{tm14(CAG-tdTomato)Hze}/J) (21) mice were obtained from The Jackson
Laboratory. Nkx2.2^{Cre/+} and Nkx2.2^{LacZ/+} mice were described previously (1, 2).
The Nkx2.2/cCre knock-in line was derived utilizing Recombination-mediated cassette exchange (RMCE), using Nkx2.2LCA acceptor cells (1). Specifically, a DNA construct with cCre-T2A (43) inserted at the 5’ ATG start codon of the Nkx2.2 coding sequence was generated to allow coordinate expression of Nkx2.2 and cCre (Supporting Information 1A). The modified Nkx2.2 locus and a hygromycin selection cassette was flanked by Lox66 and Lox2272 elements. Subsequent RMCE targeting was performed in the Nkx2.2LCA embryonic stem (ES) cells as previously described (1). The Ngn3/cCre knock-in allele was similarly derived (Supporting Information 1B). First, an acceptor ES cell line carrying the Ngn3LCA allele was derived using traditional homologous recombination-based targeting. The Ngn3LCA allele has Lox66 inserted 3.5 kb upstream of the transcription initiation site of Ngn3 and Lox2272 1kb downstream of the Ngn3 polyA signal. Mice carrying the Ngn3LCA allele alone have no detectable phenotype, suggesting that the insertion of Lox sites near the Ngn3 locus does not interfere with Ngn3 expression. The nCre-T2A (43) coding sequence was inserted at the ATG of the Ngn3 gene. The presence of T2A allows the coordinated expression of nCre and Ngn3 from the targeted allele. A DNA construct with Lox66, 3.5 kb Ngn3 5’ region, nCre-T2A-Ngn3 coding region and polyA signal, and Lox2272 was then produced. Cre-mediated cassette exchange was then performed to derive ES cells carrying the Ngn3/cCre knock-in allele. Blastocyst injections were performed for the production of mice. The Nkx2.2/cCre/+,Ngn3/cCre/+,R26RTomato (Ai9) mice were generated through interbreeding. For genotyping the Nkx2.2/cCre/+ allele, the following primers were
used: 5'-CTGGAAGGGCGTGCTCCAGGCT-3' and 5'-GCTCGCTCCAACCTGGCCATT-3' (Wildtype = 499 bp, \(Nkx2.2\text{Cre}\) = 610 bp).

To genotype the \(Ngn3\text{Cre}^+/\) allele, the following primers were used: 5'-GACTTGAGCAGGGACCGTCTCT-3' and 5'-CTCAGAGAGGGAAACGGCTTGT-3' (Wildtype = 217 bp, \(Ngn3\text{Cre}^+/\) = 442 bp) (Supporting Information 1C).

For timed pregnancies, noon on the day a vaginal plug was observed was considered to be embryonic day (E) 0.5. Unless otherwise indicated, adult mice were analyzed at 6 weeks of age.

Animal Treatments

Whole body irradiation (6 and 12 Gy) of mice was performed with a low dose irradiator for small animals (Atomic Energy of Canada Gammacell 40 Cesium Unit with a dose rate of 1 Gy/min). Mice were irradiated at 6-7 weeks of age and sacrificed 7 days after irradiation. For systemic inflammation studies, 8 week old mice were intraperitoneally injected with 2.5 mg/kg lipopolysaccharide (LPS) (from \(E.\ coli\) O111:B4; Millipore) on day 0 and day 7, and dissected 7 days after the last injection on day 14. Acute colitis in 8 week old mice was induced by 3% dextran sodium sulfate (DSS) (colitis grade, MW 36-50 kDa; MP Biomedicals, #0216011025) in the drinking water for 4 days. Mice were left to recover for 14 days with normal drinking water and were analyzed on day 18.

Histology and Immunofluorescence

Intestinal samples were cut longitudinally, flushed with cold phosphate buffered saline (PBS), rolled to “swiss rolls” (24), and fixed overnight in 4% paraformaldehyde at 4°C. Samples were then cryo-preserved with 30% sucrose,
cryo-embedded in Tissue-Tek O.C.T (Fisher Scientific, #14-373-65) and cryo-sectioned into 5 μm sections. For immunofluorescence staining, sections were incubated for 15 minutes in 0.3% H₂O₂, washed in PBS and blocked for 30 minutes at room temperature with 10% donkey serum (Fisher Scientific, #NC9624464) in PBT (PBS with 0.3% triton). Sections were incubated overnight at 4°C with the following primary antibodies diluted in 5% donkey serum in PBT: chicken anti-beta galactosidase (1:200, Abcam, ab9361); rabbit anti-chromogranin A (1:500-1000, ImmunoStar, #20085); goat anti-chromogranin A (1:100, Santa Cruz, sc-1488); Fluorescein Dolichos biflorus agglutinin (1:100, Vector Laboratories, FL-1031); rabbit anti-Dclk1 (1:10, Abgent, #AP7219b); goat anti-FABP2/I-FABP (10μg/ml, R&D, #AF1486); rabbit anti-GFP (1:100, Novus, #NB600-308); rabbit anti-lysozyme (1:200, Dako, #A0099). After washing with PBT, sections were incubated with appropriate secondary antibodies diluted in 5% donkey serum in PBT for 2 hours at room temperature. Secondary antibodies were conjugated with Alexa488, Alexa594, Alexa647, Cy5, DyLight649 (1:200, Jackson ImmunoResearch). The Tomato signal was detected by direct fluorescence of the protein. Images were acquired with either a confocal microscope (Zeiss LSM710; software “Zen 2012”) or a fluorescence stereomicroscope (Leica MZ16F; software “QCapturePro v5.1”). Hematoxylin and eosin (H&E) staining was performed according to the standard staining procedure (12).
Intestinal Organoid Cultures

Mouse crypt cultures were prepared as described previously (16, 22), with minor modifications. Small intestine of 6 week old Nkx2.2^{Cre/+};R26RTomato mice was isolated (10 cm as measured from the pyloric sphincter), cut longitudinally and washed in cold Dulbecco's phosphate-buffered saline (D-PBS) (Fisher Scientific, #MT-21-031-CV). Villi were scraped off using a razor blade and the tissue was cut into approximately 5 mm pieces. The tissue was washed thoroughly several times with cold D-PBS and incubated in 5 mM EDTA in D-PBS for 60 minutes on ice. Tissue fragments were resuspended with a 10 ml pipette in 10% fetal bovine serum (FBS; Gemini Bio Products, #100-106). The supernatant enriched in crypts was centrifuged at 175 x g for 5 minutes at 4°C, resuspended in 10 ml basal medium (Advanced DMEM/F12 (Invitrogen, #12634010) supplemented with 10 mM HEPES (Invitrogen, #15630080), 2mM GlutaMAX (Invitrogen, #35050061), 100 units/ml penicillin + 100 μg/ml streptomycin (Invitrogen, #15140122)). The suspension was centrifuged at 112 x g for 5 minutes at 4°C, resuspended in 5 ml of the basal medium and passed through a 100 μm cell strainer (Fisher Scientific, #352360). Afterwards, the crypt fractions were centrifuged at 175 x g for 5 minutes at 4°C. The crypts were then embedded in Matrigel (Fisher Scientific, #356231) and seeded in drops in a pre-warmed 48-well plate. Crypt-Matrigel drops were solidified at 37°C and afterwards overlaid with 300 μl basal medium that has the following supplements: 1x N2 supplement (Invitrogen, #17502048), 1x B27 supplement (Invitrogen, #17504044), 1 mM N-Acetylcysteine (Sigma, #A9165-5G), 10 mM nicotinamide
(Sigma, #N0636-100G), 250 ng/ml Amphotericin B (Invitrogen, #15240-062), 100 ng/ml human Noggin (Fisher Scientific, #6057-NG-025/CF), 1 μg/ml mouse R-Spondin 1 (Fisher Scientific, #3474-RS-050), 50 ng/ml mouse EGF (Invitrogen, #PMG8041). Medium was renewed every other day. D-PBS without calcium and magnesium was used for all steps of the crypt isolation.

For single cell organoid cultures, whole crypts were isolated as described above, but dissociated with TrypleE Express (Invitrogen, #12604013), including 1 mg/ml DNaseI (Roche, #10104159001) and 10 μM Y-27632 (Sigma, #Y0503), at 37°C. Dissociated cells were centrifuged, resuspended in 2% FBS, including 10 μM Y-27632 and DAPI, passed through a 40 μm cell strainer (Fisher Scientific, #352340) and sorted by Fluorescence-activated cell sorting (FACS) using a BD FacsAria Cell Sorter. Viable Tomato+ single cells were collected, pelleted and seeded in Matrigel drops in a pre-warmed 48-well plate (500-1000 cells per well). The Matrigel-cell drops were solidified at 37°C and afterwards overlaid with 300 μl basal medium, including the supplements stated above, but with additional 500ng/ml Jagged 1 FC (R&D, #599-JG-100), 100ng/ml Wnt3a (R&D, #1324-WN-010) and 10uM Y-27632.

Data Analysis

The location of Nkx2.2+ cells in the intestinal crypt was defined by analyzing a total of 100 well-sectioned crypts from the small intestine of three mice. To determine the percentage of Lgr5-EGFP+ crypts that contain Nkx2.2+/Lgr5+ double positive cells, 100 well-sectioned Lgr5-EGFP+ crypts of the small intestine were analyzed per sample (n=3). To determine the percentage of
Nkx2.2+/Bmi1+ or Nkx2.2+/Chga+/Bmi1+ co-expressing cells per total Bmi1-EGFP+ or total Nkx2.2+ cells, a total of 300 Bmi1-EGFP+ or Nkx2.2+ cells were analyzed from three mice.

The ratio of organoids that contain active Nkx2.2-expressing stem cells in the crypt culture was calculated by counting the total number of organoids grown on day 7 in culture and counting organoids that have at least one Tomato-stained cell cluster. All organoids were included in the analysis, even organoids that do not show the typical organoid structure with several buds growing out at day 7 in culture, or organoids that are small, round, or are completely Tomato-labeled.

Quantification of Nkx2.2 lineage-traced villi in the small intestine or crypts in the large intestine in treated versus non-treated mice was performed using three random “swiss roll” sections of the small or large intestine per mouse. Each villus or crypt that had at least one Tomato-stained cell cluster (at least two adjacent Tomato+ cells) was counted. Tomato-stained villi or crypts that were not sectioned in its full length, but rather into two parts, were counted as two separate villi or crypts.

Values are expressed as mean ± SEM. Statistical analysis was performed using a two-tailed unpaired Student's t-test. Results were considered significant when \(P < .05 \).
RESULTS

Nkx2.2 is expressed in intestinal stem cells of adult mice

Nkx2.2 is expressed in the intestinal crypt and villus epithelium of embryonic and adult mice. Nkx2.2 is exclusively expressed in enteroendocrine cells, which is confirmed by co-expression analysis with several enteroendocrine hormones and the enteroendocrine cell marker Chga in the small and large intestine (11, 42) (Figure 1A). Nkx2.2 expression could not be detected in the other intestinal epithelial cell types, including the Paneth, goblet and tuft cells (Figure 1B-D). However, since Nkx2.2 is expressed in the crypt region where the stem cell populations are located, we assessed whether Nkx2.2 is co-expressed with the stem cell markers Lgr5 and Bmi1. Nkx2.2+ cells were found in almost every position of the crypt, but were predominantly located at the +5 and +7 position of the crypt (Figure 2A-E). Due to the absence of suitable antibodies for immunohistochemical staining, Nkx2.2<sup>LacZ</sup/+ knock-in mice (1) were crossed to Lgr5^{EGFP}/+ or Bmi1^{EGFP}/+ mice (4, 17) to detect their respective co-expression. Consistent with its position in the crypt, Nkx2.2 can be found in a rare subset of Lgr5+ cells in the crypt of the small and large intestine of 6-7 week old mice (Figure 2A, C). 14% ± 3.21 of Lgr5-EGFP+ crypts in the small intestine contained Nkx2.2+/Lgr5+ co-expressing cells (Figure 2F). More frequently, Nkx2.2 was expressed in Bmi1+ cells in the small intestine of 6 week old mice. Interestingly, Nkx2.2+/Bmi1+ co-expressing cells were not only detected in the crypt (Figure 2B), but also in the villus (Figure 2D). In the crypt of the small intestine, 87.33% ± 3.53 of Bmi1-EGFP+ cells co-expressed Nkx2.2+/Bmi1+ (Figure 2F). More than
half of these Nkx2.2+/Bmi1+ double positive cells also expressed the enteroendocrine cell marker Chga (Figure 2B, D, F; 52.67% ± 0.33), suggesting that a subset of Nkx2.2+ enteroendocrine cells may retain stem cell potential.

Nkx2.2-expressing cells give rise to all intestinal epithelial cell types

Given the co-expression of Nkx2.2 with the stem cell markers Bmi1 and Lgr5 in a subset of intestinal crypt cells, we sought to determine the stem cell capacity of Nkx2.2-expressing cells using a constitutive Cre-loxP genetic lineage-tracing approach. The constitutive \(Nkx2.2^{\text{Cre/+}} \) knock-in mouse line (2) was crossed to \(R26\text{RTomato} \) reporter mice (21), \((Nkx2.2^{\text{Cre/+}};R26\text{RTomato}) \) and analyzed at the embryonic stages E14.5 and E15.5 to define the initiation of Cre enzyme activity. Once the Cre becomes activated, all Nkx2.2-expressing cells and their descendants are labeled with the Tomato reporter. At E14.5, there were no Tomato-labeled cells detected in the intestinal epithelium (Figure 3A). Single Tomato-stained cells were detected as early as E15.5, consistent with the beginning of Nkx2.2 expression in the intestinal epithelium at this early stage of development (11) (Figure 3B). To confirm the efficiency of the Cre enzyme, we analyzed the crypt region in 6 week old mice and found that the majority of crypts contain Tomato-labeled cells (Figure 3C).

To assess the stem cell potential of Nkx2.2-expressing enteroendocrine cells, whole-mount analysis of the small and large intestine of adult \(Nkx2.2^{\text{Cre/+}};R26\text{RTomato} \) mice was performed. We detected scattered, single Tomato+ cells throughout the intestine. In addition, entire crypt-villus units within the small intestine and crypts within the large intestine were sporadically labeled.
with the Tomato reporter (Figure 3D-I), indicating that a rare subset of Nkx2.2-expressing enteroendocrine cells had stem cell potential. On average, we detected 12.61 ± 1.91 Nkx2.2 lineage-traced villi in each “swiss roll” (24) section of the whole small intestine of 7-10 week old mice (Figure 3F), whereas in the large intestine we identified 0.67 ± 0.33 Nkx2.2 lineage-traced crypts per “swiss roll” section of 10 week old mice (Figure 3I).

To determine whether all intestinal epithelial cell lineages could be derived from Nkx2.2-expressing cells, we performed immunofluorescence staining with the Tomato reporter and specific markers of the different intestinal epithelial cell types, including enteroendocrine, Paneth, goblet and tuft cells as well as enterocytes. Within crypt-villus units that were entirely labeled with the Tomato tracer, we were able to detect co-staining of each of the epithelial cell types, including Chga-expressing enteroendocrine cells, lysozyme-expressing Paneth cells, Dolichos biflorus agglutinin (DBA) lectin-marked goblet cells, doublecortin-like kinase 1 (Dclk1)-expressing tuft cells, and fatty acid binding protein 2 (Fabp2)-expressing enterocytes (Figure 4A-D, I). As expected from the Nkx2.2 expression analysis, the majority of single Tomato+ cells represent Nkx2.2-expressing enteroendocrine cells, identified by Chga expression (Figure 1A and 4E) (11, 42). Furthermore, small populations of single Paneth, goblet and tuft cells were also labeled with the Tomato reporter (Figure 4F-H). These data show that all cell types of the intestinal epithelium can be derived from a rare subset of Nkx2.2-expressing enteroendocrine cells.
Enteroendocrine progenitor cells expressing Nkx2.2 and Ngn3 have low stem cell potential

Interestingly, lineage-tracing with the enteroendocrine progenitor cell marker Ngn3 has been reported to show a similar labeling pattern as Nkx2.2 lineage-tracing; individual cells as well as rare crypt-villus units are stained with the reporter gene in the small intestine (32) (Figure 3D, E). Since Nkx2.2 and Ngn3 are co-expressed in a subset of crypt cells in adult mice (42), we hypothesized that these co-expressing cells could represent the enteroendocrine cell population that possesses stem cell potential. We used a dimerizable Cre system that allows for cell specific expression of two inactive Cre peptides (N-terminal Cre (nCre) and C-terminal Cre (cCre)) that can efficiently dimerize and reconstitute Cre activity when co-expressed in the same cell (43).

*Nkx2.2cCre/+;Ngn3nCre/+ knock-in mice were crossed to *R26RTomato* reporter mice to assess whether Nkx2.2+/Ngn3+ double positive cells demarcated a specialized enteroendocrine progenitor population that can give rise to all intestinal epithelial cell types. Similar to the lineage-tracing of Nkx2.2-expressing cells, we could detect scattered, individual Tomato-labeled cells from the Nkx2.2+/Ngn3+ co-expressing lineages throughout the small intestine. However, there were few entirely lineage-labeled crypt-villus units compared to Nkx2.2-derived lineages (Figure 3D-F and 5). The lower number of completely lineage-labeled crypt-villus units in *Nkx2.2cCre/+;Ngn3nCre/+;R26RTomato* animals is not likely due to the lower efficiency of the dimerizable Cre system since the amount of single Tomato-labeled cells appear to be similar in *Nkx2.2cCre/+;R26RTomato*
and \(Nkx2.2^{cCre/+};Ngn3^{nCre/+};R26RTomato\) mice (Figure 3D and 5A). Furthermore, the efficiency of Cre-mediated recombination in the pancreas of \(Nkx2.2^{cCre/+};Ngn3^{nCre/+}\) mice is >95% (data not shown). Therefore, the data suggest that the \(Nkx2.2+/Ngn3+\) co-expressing cells do not represent a specialized enteroendocrine cell population with elevated stem cell potential.

Postmitotic Nkx2.2+ cells can form organoids *in vitro*

To confirm that a subpopulation of Nkx2.2-expressing enteroendocrine cells are multipotent and to exclude the possibility that the few Nkx2.2 lineage-labeled crypt-villus units are due to spurious expression, whole crypt organoids were cultured from 6 week old \(Nkx2.2^{cCre/+};R26RTomato\) mice. Tomato-labeling of the organoids was observed over a 7 day time course. At day 7, 18% ± 4 of the organoids contained clusters of Tomato-stained cells (Figure 6), indicating that the Tomato clusters can arise from Nkx2.2+ cells. Some budding crypts were also Tomato-labeled (Figure 6B, C, arrows) showing that Nkx2.2+ cells also give rise to crypts. In addition, a few organoids were completely Tomato-labeled (Figure 6D, E), indicating that either the isolated crypt was already entirely Tomato+ at the time of crypt isolation or a stem cell was labeled and gave rise to other cells of the organoid during the course of the experiment. To assess the lineage potential of single Nkx2.2+ enteroendocrine cells, we isolated single Tomato+ cells via FACS (Figure 6G) from the intestine of 6 weeks to 7 month old \(Nkx2.2^{cCre/+};R26RTomato\) mice and cultured these single Tomato+ cells for up to 11 days. Remarkably, single cells from both young and old animals were able to form small organoids that were entirely Tomato-labeled (Figure 6H), indicating
that either an actively expressing Nkx2.2+ cell or an Nkx2.2 descendant cell can
give rise to organoids. It is interesting to note that the organoids did not develop
the typical budding crypts, but formed spheres that were similar in size and
shape to spheroids present in the whole crypt organoid culture (Figure 6E, H).
These combined in vitro data suggest that a subset of Nkx2.2-expressing cells
have the potential to replicate and form organoids in culture. The single cell
organoid culture system will serve as a screening platform in future studies to
identify whether certain stimuli are able to activate the rare Nkx2.2-expressing
multipotent cell population.

Nkx2.2-expressing cells with stem cell potential do not respond to injury of
the intestinal epithelium

Similar to the limited multipotent properties of Nkx2.2+ cells in vitro, the
majority of Nkx2.2Cre/+;R26RTomato mice analyzed only showed sporadic
labeling of entire crypt-villus units. However, we occasionally detected extensive
expansion of Nkx2.2 lineage-labeled villi (Figure 7A, B), indicating that a subset
of Nkx2.2-expressing enteroendocrine cells can be mobilized to repopulate the
intestine under certain physiological conditions. To analyze whether injury of the
intestine can activate these Nkx2.2-expressing cells with stem cell properties, we
performed 6 and 12 gray (Gy) whole body irradiation on 6-7 week old
Nkx2.2Cre/+;R26RTomato mice (6 Gy: n=3, 12 Gy: n=5). Following one dose of
radiation, mice were sacrificed after 7 days (Figure 7C) and Tomato-labeled,
Nkx2.2 lineage-traced villi quantified. We observed no difference in the amount of
Tomato+ villi in the small intestine of 6 or 12 Gy irradiated mice compared to non-irradiated controls (Figure 7D).

To examine whether inflammation induces the activity of the subset of Nkx2.2-expressing enteroendocrine cells that have expanded lineage potential, mice were treated with either LPS or DSS. Intraperitoneal injection of the endotoxin LPS triggers a systemic inflammatory response (10), whereas administration of 3% DSS in the drinking water induces colitis (26). 8 week old Nkx2.2Cre/+;R26RTomato mice (n=4) were injected with 2.5 mg/kg LPS on day 0 and 7, dissected one week after the last injection on day 14, and then we examined the number of Tomato-labeled villi in the small intestine (Figure 7C). Systemic inflammation induced by LPS did not alter the number of Nkx2.2 lineage-traced villi in the small intestine compared to PBS-injected controls (Figure 7D). Colitis in 8 week old Nkx2.2Cre/+;R26RTomato mice (Control: n=4, DSS: n=10) was induced by 3% DSS in the drinking water for 4 days after which the mice were switched to normal drinking water until day 18 when they were sacrificed (Figure 7C). Successful induction of colitis was confirmed by analyzing H&E-stained sections of the large intestine of a mouse treated for 4 days with 3% DSS and left untreated for another 4 days before analysis. The intestinal epithelium shows common features of colitis, including the disappearance of crypts (27) (Figure 7F). To demonstrate that the epithelium of the large intestine completely regenerated at the end of the experiment (Day 18; 14 days after the last day of DSS treatment), we analyzed the tissue histology of the large intestine by H&E staining. The intestinal epithelium of the large intestine from DSS-treated
mice after the recovery period was indistinguishable from control mice that received normal drinking water over the entire course of the experiment (Figure 7E, G). Most DSS-treated mice did not show an increase in Tomato-labeled crypts in the large intestine. However, large intestine sections of one mouse exhibited elevated numbers of Tomato+ crypts, suggesting that colitis might enhance activation of Nkx2.2+ cells (Figure 7H). However, since only one mouse responded with increased number of Tomato+ crypts after inflammation, we hypothesize that additional insults need to be combined with inflammation to activate the subset of Nkx2.2-expressing enteroendocrine cells with increased lineage potential.

Taken together, these data show that Nkx2.2+ enteroendocrine cells that have multipotent properties do not play a dominant role in intestinal epithelial homeostasis after injury, but might be activated by inflammation. Since we observe sporadic expansion of the Nkx2.2 lineages (Figure 7A, B), it is possible that a combination of physiological assaults is necessary to activate the multipotent Nkx2.2-expressing enteroendocrine population.

Nkx2.2 is dispensible for the pluripotency of intestinal stem cells

To investigate whether Nkx2.2 is important for the function of stem cells, we deleted Nkx2.2 using homozygous $Nkx2.2^{Cre/Cre}$ knock-in mice. Since these mice die shortly after birth, the intestines of newborn animals were analyzed for Nkx2.2 lineage-tracing. We detected fewer single Tomato-labeled cells in $Nkx2.2^{Cre/Cre}$ mice (Figure 8A, C), consistent with the reduction of enteroendocrine cell populations in Nkx2.2 knock-out mice (11). However, similar
to heterozygous $Nkx2.2^{\text{Cre/}}$ mice, entire Tomato+ crypt-villus units were observed (Figure 8), which seemed to appear by a similar frequency (data not shown), suggesting that Nkx2.2 is dispensible for pluripotency of this stem cell-like population.

DISCUSSION

Two stem cell populations have been identified in the small intestine of mice. The highly proliferating CBCs express Lgr5 and reside in the crypt base of both the small and large intestine (4). The Bmi1+ stem cell population, on the other hand, is mainly found at the +4 position of the crypt in the proximal small intestine (31). Recent data indicates that other cell populations in the crypt can contribute to the stem cell pool, as secretory progenitor cells, and subpopulations of Paneth and enteroendocrine cells become activated and gain stem cell characteristics upon intestinal damage (7, 30, 40, 41). These findings suggest that there are still unanswered questions regarding the stem cell populations within the intestine. In particular, it remains elusive whether differentiated cell populations in the intestinal crypt can contribute to the stem cell pool under normal intestinal homeostasis, and which particular physiological conditions activate them.

In this study, we utilized a constitutive Nkx2.2 lineage-tracing approach to demonstrate that a subset of Nkx2.2-expressing mature enteroendocrine cells has stem cell properties. The $Nkx2.2^{\text{Cre}}$ mice have the Cre gene inserted into the endogenous $Nkx2.2$ genomic locus so that Cre faithfully recapitulates $Nkx2.2$ expression (2). In this study, we confirmed that Cre is accurately expressed in
the Nkx2.2 expression domain of the intestine and marks all Nkx2.2 derivative
cells with the reporter gene. Although there are limitations to this constitutive
lineage-tracing technique since you cannot control the timing of Cre activation,
the high efficiency of constitutive lineage-tracing allowed us to identify a rare
Nkx2.2-expressing enteroendocrine population that has expanded lineage
potential. An inducible Nkx2.2-Cre system would have provided a more refined
analysis of the prospective stem cell, however these mice were not available for
our studies. Furthermore, an inducible Nkx2.2 lineage-tracing strategy may have
failed to identify the rare subset of enteroendocrine cells that displayed
multipotent properties due to the lower efficiency associated with inducible Cre
alleles.

While single Ngn3-expressing enteroendocrine progenitor cells also have the
capacity to give rise to differentiated epithelial cell types other than
enteroendocrine populations (32), we demonstrate that the Nkx2.2+/Ngn3+ co-
expressing enteroendocrine progenitors do not show enriched stem cell capacity.
This would suggest that single Nkx2.2+ cells that have stem cell potential do not
represent the Nkx2.2-expressing enteroendocrine progenitors, but are a more
mature enteroendocrine population, as schematized in the model (Figure 9).

We demonstrate that Nkx2.2 is expressed in a rare subset of Lgr5+ CBCs in
the small and large intestine. This is consistent with a recent report that identified
a rare Lgr5+ enteroendocrine cell population (15). However, expression of
Nkx2.2 was mainly detected in the Bmi1+ stem cells of the proximal small
intestine. This is supported by the predominant localization of Nkx2.2 to the +5 to
+7 position of the crypt, where +4 (Bmi1+) stem cells can be found as well (5). Interestingly, co-staining with Chga revealed that the majority of Nkx2.2+/Bmi1+ co-expressing cells are enteroendocrine cells. It is possible that retention of Bmi1 expression in this differentiated cell population is indicative of sustained stem cell capacity. The lineage-tracing experiments in vivo and in vitro confirmed that few Nkx2.2-expressing enteroendocrine cells possess stem cell potential, as only a subpopulation of Nkx2.2+ cells gives rise to all intestinal cell types within an entire crypt-villus units during normal intestinal homeostasis. Another possible explanation for the occasional Tomato+ crypt-villus units could be the high plasticity of intestinal tissue, such that a rare subset of Nkx2.2-expressing enteroendocrine cells dedifferentiates to a more multipotent progenitor state. It is unlikely that the labeled Nkx2.2-derived lineages are initiated from an early endodermal cell that gave rise to a stem cell during fetal development since Nkx2.2 expression has never been observed in undifferentiated endoderm-derived intestinal lineages. Furthermore, several of the Nkx2.2 lineage-labeled budding crypts that formed in the in vitro whole crypt organoid cultures, were labeled after the initiation of the adult-derived organoid cultures. Interestingly, in addition to entire crypt-villus units being lineage-labeled, we identified several isolated Nkx2.2 lineage-traced goblet, Paneth and tuft cells. This observation is similar to that previously reported for lineage-tracing with Ngn3 in the intestine (32). By using beta-galactosidase as a reporter for Nkx2.2 expression in the intestine of Nkx2.2^{LacZ/+} mice, we were unable to detect any goblet, Paneth and tuft cells expressing Nkx2.2(LacZ). Therefore, we conclude that the isolated
Nkx2.2 lineage-traced cells found in Nkx2.2Cre/+;\textit{R26RTomato} mice are progeny from a cell that formerly expressed Nkx2.2 rather than actively expressing Nkx2.2. It is unlikely that the expression pattern of the Nkx2.2LacZ/+ allele differs from the Nkx2.2Cre/+ allele, since both are knock-in alleles under the same promoter and enhancer elements. The function of the transcription factor Nkx2.2, however, does not appear important for maintenance of pluripotency of Nkx2.2-expressing stem-like cells, since entirely Tomato-labeled crypt-villus units were still visible after ablation of Nkx2.2.

Consistent with our findings, several studies in other tissues as well as in the intestine have revealed that differentiated cells have the potential to serve as stem cells. In the proximal tubule of the kidney, differentiated epithelial cells have been shown to dedifferentiate following injury. These cells proliferate and express stem cell markers in order to repair the tissue (20). In the stomach, mature Troy+ chief cells act as reserve stem cells to generate all cell lineages of the gastric epithelium (34). Furthermore, secretory cells in the lung airway epithelium are able to convert into functional stem cells \textit{in vivo}. Following ablation of the airway stem cells, the secretory cells start proliferating and lineage-tracing analysis confirms that the secretory cells can dedifferentiate into basal stem cells (37). In the intestine, it was previously demonstrated that mature enteroendocrine cells can express stem cell markers (33, 41). Analyses of transgenic mice that express GFP under the promoter for the hormone cholecystokinin (CCK) showed that CCK-GFP+ cells in the crypt express not only the enteroendocrine cell marker Chga, but also several stem cell markers, including Lgr5. These cells
were negative for the proliferation markers Ki-67 and phospho-Histone H3 (33), indicating that the cells were either mature or quiescent, but not actively proliferating. Furthermore, it has been shown that intestinal epithelial cells expressing high levels of SRY box 9 (Sox9) express markers for terminally differentiated enteroendocrine cells (13). Flow cytometry and microarray analysis demonstrated that these Sox9^{High} enteroendocrine cells also express the +4 stem cell marker Bmi1. Only after radiation injury, these Sox9^{High} enteroendocrine cells are able to form organoids \textit{in vitro} (41), suggesting that they are able to contribute to the regeneration process, but are not important during normal intestinal epithelial homeostasis. In contrast to these observations, our data shows that Nkx2.2-expressing mature enteroendocrine cells are sporadically activated to become stem cells during normal intestinal epithelial homeostasis as well as during regeneration of the intestinal epithelium. However, their activity could not be enhanced by the used intestinal injury models. Although Nkx2.2 is co-expressed with the Lgr5 and Bmi1 stem cell markers, it is surprising that intestinal injury by irradiation does not enhance the activity of the Nkx2.2-expressing cells. Recent publications have shown, that ablation of the Lgr5+ stem cells with either 12 Gy irradiation or diphtheria toxin results in an expansion of the Bmi1+ lineage (38, 44). Therefore, one would expect that there are more entire Nkx2.2 lineage-traced crypt villus units after 12 Gy irradiation, since Nkx2.2 is co-expressed with Bmi1 in 87% of the total Bmi1+ cells. Instead, it seems the Nkx2.2-expressing cells are radiation resistant.
The intestine is a tissue with high self-renewal capacity that constantly responds to changing environmental stimuli, including harsh conditions and continual changes in nutrients and microorganisms. In order to maintain robust intestinal homeostasis, it is likely that the intestine has developed multiple backup mechanisms beyond the two well-characterized stem cell populations in order to ensure organ integrity. We hypothesize that a subset of differentiated cell populations, such as Nkx2.2+/Bmi1+ enteroendocrine cells, retain stem cell-like characteristics so that they can easily be reactivated in response to changing physiological conditions in order to supplement, or replace when necessary, the activities of the canonical stem cell populations.

Our data demonstrate that the Nkx2.2-expressing enteroendocrine cells that have expanded lineage potential are present in the small and large intestine, but that their activity is not greatly enhanced by the intestinal injury models analyzed in this study. Given the robustness of the Lgr5+ and Bmi+ canonical stem cells, it is likely that activation of a reserve stem cell population may require additional or more extreme environmental insults, suggesting that the stem cell-like Nkx2.2+ enteroendocrine cells follow the “Two-Hit-Hypothesis” (19). Further studies are needed to better define which conditions alone or in combination influence the cellular plasticity and lineage potential of the subset of Nkx2.2-expressing enteroendocrine cells that have increased intestinal cell lineage potential.
ACKNOWLEDGEMENT

We thank Yoku Hayakawa and Ashlesha Muley from the Wang lab for technical advice and helpful discussions. We thank Lisa Mazinski at New York University for her help with slide scanning. We thank the Flow Cytometry Core at Columbia University for assistance with cell sorting by FACS. We thank the Sussel lab for critical reading of the manuscript.

Present address: Samuel Asfaha, Victoria Research Laboratory, University of Western Ontario, London, Ontario, Canada.

Grants:

This work was supported by NIH grant R01 DK082590 (L.S.) and American Diabetes Association (ADA) grant 7-11-MN-61 (L.S. and S.G.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Disclosures:

The authors declare no competing financial interests.

REFERENCES

40. van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, Martens AC,

FIGURE CAPTIONS

Figure 1: Nkx2.2 is expressed in enteroendocrine cells in crypts and villi of the intestinal epithelium of adult mice. Immunofluorescence of the small and large intestine of 5-6 week old Nkx2.2\(^{LacZ/+}\) mice shows co-expression of Nkx2.2 with the enteroendocrine cell marker chromogranin A (Chga) in crypts and villi (A). Co-staining of Nkx2.2 with lysozyme-expressing Paneth cells (B), DBA lectin-marked goblet cells (C) and Dclk1-expressing tuft cells (D) could not be detected in the small intestine. Nkx2.2 was detected by β-galactosidase antibody staining (Nkx2.2\(^{LacZ/+}\)). Confocal images; Magnification: 20x, 63x (A, crypt and villus; B-D, insets from arrow).

Figure 2: Nkx2.2 is co-expressed with Lgr5 and Bmi1. Immunofluorescence analysis of the small intestine of 6-7 week old Nkx2.2\(^{LacZ/+};Lgr5^{EGFP/+}\) and Nkx2.2\(^{LacZ/+};Bmi1^{EGFP/+}\) mice. Nkx2.2 is detected in rare Lgr5-EGFP expressing cells in the small (A) and large (C) intestine (arrows), but in many Bmi1-EGFP positive cells in crypts (B) as well as villi (D) of the small intestine. Some of the Nkx2.2+/Bmi1-EGFP+ cells also express the enteroendocrine cell marker chromogranin A (Chga) (B, D, arrows). Nkx2.2 was detected by β-galactosidase antibody staining (Nkx2.2\(^{LacZ/+}\)). Confocal images; Magnification: 63x. Analysis of the location Nkx2.2+ cells in the crypt of the small intestine (E). Analysis of Nkx2.2+/Lgr5+, Nkx2.2+/Bmi1+ and Nkx2.2+/Bmi1+/Chga+ cell numbers in the small intestine (F).
Figure 3: Lineage-tracing of Nkx2.2-expressing cells in the murine intestinal epithelium. Activity of Nkx2.2Cre is verified by Tomato staining in sections of E14.5 (A) and E15.5 (B) Nkx2.2^{Cre/+};R26RTomato embryos. Tomato-stained cells can be found as early as E15.5 in the intestine. In 6 week old mice Tomato-stained cells are detected in almost every crypt (C). Whole-mount images (D, G) and sections (E, H) from of the small (D, E) and large (G, H) intestine of 6 weeks old Nkx2.2^{Cre/+};R26RTomato mice show single Tomato+ cells as well as whole crypts and villi being Tomato-labeled. Magnification: 4x (C, D, G), 20x (A, B, E, H). Int = intestine, P = pancreas. Quantification of Tomato-stained villi per “swiss roll” section in the small intestine (F; n=12) and Tomato-labeled crypts per “swiss roll” section in the large intestine (I; n=4).

Figure 4: Nkx2.2 lineage-tracing labels all intestinal epithelial cell types. Immunofluorescence of the small intestine of 6 week old Nkx2.2^{Cre/+};R26RTomato demonstrates that enteroendocrine cells marked by chromogranin A (Chga) are Tomato positive (A, E; arrow). Lysozyme-expressing Paneth cells (B, F; arrow), goblet cells that are marked by DBA (C, G; arrow), rare Dclk1-expressing tuft cells (D, H; arrow), and Fabp2-expressing enterocytes (I; arrow) are stained with Tomato as well. Confocal images; Magnification: 20x (A-I); 63x (insets from arrow).

Figure 5: Lineage-labeling of Nkx2.2+/Ngn3+ co-expressing cells. Whole-mount images of the small intestine of 6 week old
Figure 6: Nkx2.2 lineage-tracing in small intestinal crypt organoid cultures. Crypts were isolated from 6-7 week old \textit{Nkx2.2}^{Cre/+};\textit{R26RTomato} mice and cultured for 7 days. An image of a single representative organoid was taken every day over the time course of the crypt culture (A). Organoids show scattered Tomato-stained cells. After 7 days in culture, some organoids developed crypts that are entirely Tomato-labeled (B, C, arrows), whereas other organoids are completely Tomato red (D, E). 10x magnification. Quantification of organoids with Tomato-stained cell clusters in proportion to the total amount of organoids in the culture (F; n=5). Viable single Tomato+ cells were isolated via FACS (G) from the small intestine of 6 weeks to 7 month old \textit{Nkx2.2}^{Cre/+};\textit{R26RTomato} mice and grown for up to 11 days into organoids. Small, round organoids grew that were entirely Tomato-labeled (H).

Figure 7: No change in the amount of whole Nkx2.2 lineage-traced villi after irradiation, LPS and DSS treatment. Whole-mount images of the small intestine of 7 month old \textit{Nkx2.2}^{Cre/+};\textit{R26RTomato} mice (A, B). In most mice, rare entire crypt-villus units in the small intestine are Tomato-labeled (A, arrow). Occasionally, the amount of entirely Tomato-stained villi increased (B; n=1). Schematic overview of the used intestinal injury models (C). Quantification of
Tomato-stained villi in the small intestine of 6 Gy, 12 Gy and LPS-treated mice compared to control mice shows no significant differences (D; 6 Gy: n=3, 12 Gy: n=5, LPS: n=4, 3 “swiss” roll sections analyzed per sample). H&E stained sections of the large intestine of control (E) and DSS-treated mice (F, G) confirm that colitis is apparent 4 days after the last day of DSS treatment (F) and the large intestine is regenerated 14 days after the last day of DSS (G).

Magnification: 1x (A, B); 5x (E-G). Quantification of Tomato-stained crypts in the large intestine of DSS-treated mice compared to control mice does not show a significant change in most samples. However, the large intestine of one mouse shows a dramatic increase in Nkx2.2 lineage-labeled crypts (H; Control: n=4, DSS: n=10, 3 “swiss” roll sections analyzed per sample).

Figure 8: Nkx2.2 appears to be dispensable for pluripotency. Tomato-stained villi were found by whole-mount imaging (A, C) and in sections (B, D) of the small intestine of newborn Nkx2.2Cre/+;R26RTomato (A, B) and mutant Nkx2.2Cre/Cre;R26RTomato (C, D) mice. Magnification: 4x (A, C), 20x (B, D).

Figure 9: Nkx2.2-expressing mature enteroendocrine cells can give rise to all cell types of the intestinal epithelium. The Lgr5+ and Bmi1+ intestinal stem cells (ISC, white) are known to give rise to all intestinal epithelial cell types, including enterocytes (blue), goblet cells (orange), Paneth cells (yellow), tuft cells (pink) and enteroendocrine cells (green). In addition, it has been shown that enteroendocrine cells express Nkx2.2 and are derived from Ngn3-expressing
progenitor cells (light green). Lineage-tracing with Ngn3 has further demonstrated that Ngn3+ enteroendocrine progenitor cells can give rise to all intestinal epithelial cell types. In this study, we showed that some Nkx2.2-expressing enteroendocrine cells co-express Lgr5 or Bmi1 (green/white). Furthermore, we demonstrated that Nkx2.2-expressing mature enteroendocrine cells can give rise to all intestinal epithelial cell types. In contrast, Nkx2.2+/Ngn3+ co-expressing progenitor cells (green/light green) are not able to give rise to all intestinal cell types. Black arrows: published by others; dashed arrows: hypothetical; red arrows: shown in this study.
Experimental Results

Bar Graph

<table>
<thead>
<tr>
<th>Cell Position</th>
<th>% Nkx2.2+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.33 ± 1.21</td>
</tr>
<tr>
<td>2</td>
<td>1.50 ± 2.31</td>
</tr>
<tr>
<td>3</td>
<td>2.00 ± 1.31</td>
</tr>
<tr>
<td>4</td>
<td>3.00 ± 1.41</td>
</tr>
<tr>
<td>5</td>
<td>4.00 ± 2.41</td>
</tr>
<tr>
<td>6</td>
<td>5.00 ± 1.41</td>
</tr>
<tr>
<td>7</td>
<td>6.00 ± 2.41</td>
</tr>
<tr>
<td>8</td>
<td>7.00 ± 1.41</td>
</tr>
<tr>
<td>9</td>
<td>8.00 ± 1.41</td>
</tr>
<tr>
<td>10</td>
<td>9.00 ± 2.41</td>
</tr>
<tr>
<td>11</td>
<td>10.00 ± 2.41</td>
</tr>
<tr>
<td>12</td>
<td>11.00 ± 2.41</td>
</tr>
<tr>
<td>13</td>
<td>12.00 ± 2.41</td>
</tr>
<tr>
<td>14</td>
<td>13.00 ± 2.41</td>
</tr>
<tr>
<td>15</td>
<td>14.00 ± 2.41</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Co-expressing cells</th>
<th>% ± SEM of total Lgr5-EGFP+ crypts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nkx2.2+ Lgr5+</td>
<td>14.00 ± 3.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-expressing cells</th>
<th>% ± SEM of total Bmi1-EGFP+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nkx2.2+ Bmi1+</td>
<td>87.33 ± 3.53</td>
</tr>
<tr>
<td>Nkx2.2+ Bmi1+ Chga+</td>
<td>52.67 ± 0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-expressing cells</th>
<th>% ± SEM of total Nkx2.2+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nkx2.2+ Bmi1+</td>
<td>85.61 ± 4.76</td>
</tr>
<tr>
<td>Nkx2.2+ Bmi1+ Chga+</td>
<td>52.01 ± 4.72</td>
</tr>
</tbody>
</table>