Effects of Laryngeal Restriction on Pharyngeal Peristalsis and Biomechanics; Clinical Implications

Short title: Deglutitive pharyngeal strength training

Reza Shaker*, Patrick Sanvanson*, Gokulakrishnan Balasubramanian*, Mark Kern*, Ashley Wuerl*, Allison Hyngstrom‡

*Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA

‡Department of Physical Therapy, Marquette University, Milwaukee, WI, USA

Corresponding Author:
Reza Shaker, MD
9200 West Wisconsin Avenue
Milwaukee, WI 53226
Phone: 414.955.6840
Fax: 414.955.6215
E-Mail: rshaker@mcw.edu
ABSTRACT

Background: To date, rehabilitative exercises aimed at strengthening the pharyngeal muscles have not been developed due to the inability to successfully overload and fatigue these muscles during their contraction; a necessary requirement for strength training. Aims: to test the hypothesis that applying resistance against anterosuperior movement of the hyo-laryngeal complex will overload the pharyngeal muscles and by repetitive swallowing will result in their fatigue manifested by a reduction in pharyngeal peristaltic amplitude.

Methods: Studies were done in two groups. In group one studies 15 healthy subjects (age: 42±14 years, 11 female) were studied to determine whether imposing resistance to swallowing using a handmade device can affect the swallow induced hyo-laryngeal excursion and related UES opening. In group two, additional fifteen healthy subjects (age 56±25 years, 7 female) were studied to determine whether imposing resistance to the antero-superior excursion of the hyo-laryngeal complex induces fatigue manifested as reduction in pharyngeal contractile pressure during repeated swallowing.

Results: Analysis of the video recordings showed significant decrease in maximum deglutitive superior laryngeal excursion and UES opening diameter (p<0.01) due to resistive load. Consecutive swallows against the resistive load showed significant decrease in pharyngeal contractile integral (PhCI) values (p<0.01). Correlation analysis
showed a significant negative correlation between PhCl and successive swallows suggesting \textquotedblleft fatigue\textquotedblright; \(p < 0.001 \),

Conclusion: Repeated swallows against a resistive load induced by restricting the anterosuperior excursion of the larynx safely induces fatigue in pharyngeal peristalsis and thus has the potential to strengthen the pharyngeal contractile function.

Keywords: Exercise; pharynx; dysphagia; swallowing
INTRODUCTION

Swallowing disorders, especially those involving the oral/pharyngeal phase of swallowing, are common and constitute a major health problem worldwide.(5)

Oral/pharyngeal phase of swallowing involves complex interactions between lingual, pharyngeal, oral, cervical and laryngeal musculature. In addition to precise coordination, adequate contractile function of these muscles is crucial for safe transport of the swallowed bolus out of the pharynx and into the esophagus.(2)

Diminished pharyngeal contractile function resulting in inadequate pharyngeal clearance is common after neurologic injury, radiation therapy for head and neck malignancy, oncologic surgery as well as in advanced age and contributes to significant swallow impairment leading to aspiration, aspiration pneumonia and malnutrition.(4, 9, 11, 14, 15, 20, 25, 26, 28, 32-34)

Although varying methods of rehabilitation constitute the current management strategies for treating oral/pharyngeal dysphagia,(8, 12, 17, 27) to date, rehabilitative exercises specifically aimed at strengthening the pharyngeal muscles involved in swallowing have not been developed. This shortcoming is mainly due to the inability of rehabilitative modalities to successfully overload these muscles during contraction. Muscle overload is necessary to cause physiologic changes in the muscle and is a requirement for any successful strength training as shown in rehabilitative exercises of other muscle groups such as the limbs and the suprahyoid UES opening muscles.(23,
Neuromuscular fatigue is defined as acute exercise-induced reduction in force and is a sign that muscle overload is occurring during exercise.\(^{(13)}\)

For this reason, we hypothesized that applying resistance against antero-superior movement of the hyo-laryngeal complex during swallowing will overload the pharyngeal muscles and, by repetitive swallowing, result in their neuromuscular fatigue manifested by a reduction in the pharyngeal deglutitive contractile pressure. This end point was chosen to satisfy the accepted principle of exercise physiology that, for an exercise to result in strengthening, it should overload the muscle and induce reduction in force i.e. fatigue in the target muscle during the exercise.\(^{(10, 19, 23)}\)

The reason for choosing to use the resistance to hyo-laryngeal excursion as a tool for overloading the pharyngeal musculature is based on fundamental deglutitive biomechanics wherein one of the prominent features of a normal swallow is anterior and superior movement of the hyoid and larynx that is associated with a number of important swallow events such as pharyngeal shortening and UES opening. In fact, compromised anterior and superior movement of the hyo-laryngeal complex is associated with poor pharyngeal clearance in the elderly\(^{(16, 36)}\) as well as in patients with dysphagia of varying etiology including stroke and following cancer treatment.\(^{(18, 24)}\)

The current studies were designed to answer two questions; 1. Does the applied resistance cause restriction in any deglutitive biomechanical measures such as reduction in swallow-induced hyo-laryngeal excursion as well as reduced UES opening and 2. Does imposing resistance to the antero-superior excursion of the hyo-laryngeal
complex during repeated swallowing result in reduction in deglutitive contractile pressure of the pharynx indicative of fatigue of pharyngeal muscles.

METHODS

We studied a total of 30 healthy volunteers. Studies were done in two groups and were approved by the internal review board of the Human Research Protection Program at the Medical College of Wisconsin, Milwaukee, Wisconsin. All participants gave written informed consent prior to their studies.

Group One Studies

In group one studies, 15 healthy subjects (age: 42±14 years, 11 female) were studied. These studies were performed to determine whether imposing resistance to the antero-superior excursion of the hyo-laryngeal complex can affect the swallow induced Hyo-laryngeal excursion and its related UES opening.

Experimental Tools

Swallow Resistance Exercise Device (sRED)

To increase the load on the deglutitive muscles of the pharynx by restricting the antero-superior excursion of the hyo-laryngeal complex, we used a device constructed in our lab to provide an adjustable and fixed resistance to anterior and superior movement of the hyo-laryngeal complex. This hand-made device consists of a cotton fabric strap 63.5 cm in length and 2 cm in width. The ends of the strap are affixed with VELCRO (VELCRO® brand fasteners, VELCRO® is a registered trademark of Velcro Industries B. V., Velcro USA Inc. 406 Brown Avenue, Manchester, NH 03103) strips 21
cm in length to customize fitting of the device when the strap is wrapped around the neck. The middle portion of the device has an additional cotton pad 30 cm in length and 5 cm in width to provide support for the portion of the device that applies external pressure to the laryngeal cartilage when positioned on the subject. A concave, flexible plastic disk is affixed to the middle of the strap assembly. This concave disk is wrapped in tape and serves as a support structure for an inflatable polyethylene bag which will act to apply an external force to the laryngeal cartilage to restrict anterior and superior movement of the larynx. The inflatable bag is connected via a flexible catheter assembly to a hand pump and pressure gauge. The inflatable pad rests in position on the thyroid cartilage fixed by closure of the VELCRO straps. A known external force may be applied to the thyroid by partially inflating the bag to a specific pressure reading on the gauge. The soft and compliant bag conforms to the surface of the skin cradling the irregular geometry of the larynx while applying a resistive force to anterior and superior distraction of the hyo-laryngeal complex during swallowing.

Study technique

We used digital video fluoroscopy that recorded at 30 images per second in the sagittal view to record and subsequently analyze the deglutitive laryngeal and hyoid excursions from their resting pre-deglutitive position as well as the maximum deglutitive UES opening diameter (UESD max) at its narrowest segment. Videofluoroscopic recordings were obtained at 90 Kev, using a 9-in. image-intensifier and appropriate collimation. In all subjects, we recorded digital fluoroscopic movies of 0.5 and 5 ml thin liquid barium (equal parts water and E–Z EM barium sulfate powder, E-Z-EM Canada, Inc.) swallows each repeated three times. Fluoroscopic sagittal images were centered
on the pharyngo-esophageal junction to clearly visualize the pharynx, UES, proximal esophagus, larynx and hyoid bone. Three conditions were tested, namely: 1) no resistive device in place, 2) resistive device in place exerting zero pressure, 3) resistive device in place exerting 40 mmHg external pressure on the thyroid cartilage.

Image analysis: Digital images were measured in stop action using freely available image analysis software(29) to quantify deglutitive laryngeal and hyoid excursions from the resting pre-deglutitive position as well as the maximum deglutitive UES opening diameter (UESD max) at its narrowest segment in the sagittal view. Anterior movement was defined perpendicular to the imaginary line connecting the anterior aspect of vertebrae C4, C5 and C6 viewed in the sagittal plane while superior movement was defined parallel to that line.

Statistical Analysis

Data was analyzed using paired Student’s t-Tests and Wilcoxon Signed Rank Test. Data is presented as mean± standard deviation unless stated otherwise.

Group Two Studies

In group two studies, fifteen additional healthy subjects (age 56±25 years, 7 female) were studied. These studies were aimed at determining whether imposing resistance to the antero-superior excursion of the hyo-laryngeal complex as described above induces reduction in force/ fatigue manifested as reduction in pharyngeal contraction during repeated swallowing.
Experimental Tools

Pharyngeal and Proximal Esophageal Manometry

Pharyngeal and proximal esophageal pressures were monitored using a high resolution manometric catheter positioned trans-nasally to traverse the pharynx, upper esophageal sphincter (UES) and proximal esophagus. The manometric probe and computerized recording and analysis system (ManoScan and ManoView Systems, Given Imaging, Inc. 3950 Shackleford Rd. Ste 500 Duluth, GA) stores pressure data from 36 pressure sensors (1 cm sensor spacing) on the probe, displays the manometric information in topographic or line graph formats as well as provides post-acquisition analytic tools for parameterization of temporal and spatial pressure data.

Experimental Protocol

All subjects were seated in an upright position for the duration of the study. The subjects were verbally cued to perform 40 consecutive swallows of 0.5 ml room temperature water while wearing the sRED at 40mmHg pressure during high resolution manometry (HRM). The most proximal sensors were intentionally positioned 2 cm proximal to the most proximal pressure generating site in the pharynx. With this arrangement the 36 high resolution manometric sensors covered at minimum 12 cm area proximal to the UES, the entire UES and 15 cm of the esophagus (covering the entire striated muscle esophagus, transition zone, and a portion of smooth muscle esophagus). Since our intent was to study the pharynx and the UES this arrangement served our purpose. Furthermore, in additional studies (not presented in this paper), we evaluated the pharynx with HRM and fluoroscopy, further ascertaining the inclusion of
all pharyngeal contractile function in our studies. The minute amount of water was used to reduce swallowing difficulty commonly seen in our laboratory when subjects swallow repetitively. There was a 20 second interval between swallows wherein the subject refrained from swallowing. The water bolus was slowly injected into the oral cavity by a syringe and the subject was then cued to swallow the water in a single swallow. During these 40 swallows, the applied external pressure was maintained at 40 mmHg as measured by the external sRED pressure gauge. Following these swallows, the sRED was removed and, after a 20 minute rest period, another 40 swallows with 20 second intervals between swallows were recorded without the application of resistive load. During the 20 minute rest period, subjects remained seated with the manometric catheter in place and were told to relax and swallow ad libitum.

Manometric Parameters of Fatigue

Several manometric parameters were measured and analyzed for each swallow. Peak deglutitive peristaltic wave pressures were measured at positions 2, 3, 4, 5, 6, 7 and 8 cm above the upper margin of the manometrically determined upper esophageal sphincter high pressure zone (UESHPZ). The deglutitive UES nadir pressure was also measured. Additionally, a parameter derived from the ManoView analysis software namely the Pharyngeal Contractile Integral (PhCI) was measured. The pharyngeal contractile integral (PhCI) was calculated using the “SmartMouse” feature of the ManoView software. The contractile integral technique has been utilized in the distal esophagus as metric of “contractile vigor”(22) by multiplying the mean pressure amplitude times the contraction duration times the length of the region of interest. In the ManoView software topographic display using the computer’s mouse, the contractile
integral is calculated by scrolling out an area in the topographic display delineating a space-time box and logging the displayed contractile integral value. For the purposes of our analysis, the PhCI was characterized by circumscribing a space-time box in the topographic ManoView display to surround the pharyngeal deglutitive pressure recording with the upper margin of the box at the most proximal probe sensor at a time prior to deglutition and the distal margin of the box at the predetermined upper margin of the UES high pressure zone at the time of return of the high pressure zone to its resting manometric profile.

Both the peak peristaltic pressures and the PhCI were used as manometric surrogates for detecting fatigue due to repeated deglutitive pharyngeal contraction against the increased load provided by the sRED. These metrics were also evaluated for the swallow sequences without the sRED. In a second order analysis, the linear regression slope and correlation coefficient of the peak pressures and PhCI across sequential swallows were evaluated wherein a significant negative correlation (or a negative slope statistically different than zero) was considered associated with fatigue of the deglutitive pharyngeal muscles. All parameters were analyzed via inspection of the data by study team members.

Statistical Analysis

Pearson correlation analysis was used to detect decreasing pharyngeal peak deglutitive peristaltic pressures and decreasing PhCI across consecutive water swallows. Slope values were compared for these parameters with and without the
application of the resistive load by the sRED using the paired t-test. Data is presented as mean+/− standard deviation unless stated otherwise.

Inter-rater Concordance

Fundamental to the success of this approach, automated analysis techniques notwithstanding, was the reliability and reproducibility of the measurements, therefore, selected recordings (total of 8400 pressure signatures, 1200 pharyngeal contractile integrals and 1200 intra-bolus pressures) were analyzed independently by three different observers representing a spectrum of experience to measure inter-rater variability.

Results of group one studies:

The experimental procedure in this group of studies was well tolerated by all participants (Figure 1). Healthy volunteers were recruited through advertisement and their medical history and physical did not indicate any abnormalities related to deglutition function. In addition, these details were corroborated by a detailed questionnaire filled out by each volunteer. For all studied subjects, the video fluoroscopic findings were characterized by lack of residue, lack of aspiration, lack of penetration, lack of delay between oral and pharyngeal phase of swallowing as well as the ability to form and hold the barium bolus without spillage or premature spill into the pharynx. Analysis of the video recordings showed significant effects of the resistive load on maximum deglutitive superior and anterior hyoid and laryngeal excursions as well as the maximum UES opening diameter (UESD) for both tested 0.5 and 5.0 ml swallowed volumes (Figure 2A-F). As seen, for both 0.5 and 5 ml bolus, there were
significant differences in the magnitude of biomechanical metrics when comparing values without the restrictive load to those with the resistive load i.e. sRED with 40 mmHg pressure (p<0.05). Additionally, there was a further significant difference comparing values when the device exerted zero external pressure compared to 40 mmHg external pressure. For both 0.5 and 5 ml bolus data, superior laryngeal excursion was significantly different when comparing values with the resistive device exerting no external pressure to values with the resistive device in place exerting 40 mmHg pressure. Also for both 0.5 and 5 ml swallows, UESD was significantly different when comparing values without the restrictive device to those with the device exerting no pressure as well as with the device on exerting 40 mmHg external pressure.

Results of group two studies:

All subjects performed the protocol without incident. Consecutive swallows with the resistive load induced by sRED showed significant decrease in the peak pharyngeal peristaltic pressure amplitude characterized by reduced pharyngeal contractile integral (PhCl) values. Correlation analysis showed a significant negative correlation between PhCl and successive swallows suggesting neuromuscular “fatigue” of the pharyngeal muscles due to swallowing against the resistive load ((Figure 3), p<0.01). Swallows without the application of resistive load, were not associated with significant negative correlation (p>0.05).

In further analysis, the set of 40 swallows were partitioned into 5 swallow epochs to determine the effect of resistive load across consecutive swallows. The PhCl for the
five swallows were averaged in each epoch. Average PhCl was tested across epochs
and across all subjects using ANOVA. Significant differences across epochs were seen
for PhCl with but not without the application of the resistive load.

Epoch-wise tests corrected for multiple comparisons showed that although there
was a progressive decline in PhCl from epoch 1 to epoch 8, differences were driven by
significant difference in epoch 2 compared to epoch 8 (Figure 4, p<0.02).

Since PhCl reflects the pressure phenomena across the entire pharynx, further
site-wise analysis revealed that the fatigue trend significantly affected some but not all
of the manometric recording sites (Table 1). As seen in table 1, the pharyngeal sites that
exhibited reduction in maximum amplitude of peristaltic pressure wave included those
situated in the proximal pharynx. In the distal pharynx i.e. sites 2,3,4,5 cm orad to the
UES, where the pharyngeal pressure is influenced by the posterior tongue thrust,
reduction in PhCl did not reach statistical significance.

As an example, the peak deglutitive peristaltic wave amplitudes 8 cm above the
upper margin of the UES high pressure zone (UESHPZ) from one subject is shown in
Figure 5. As seen there is a progressive decrease in peak pressure at this location for
sequential swallows with the resistive load (p<0.05). This decrease is absent for
successive swallows without the resistive load. Composite data from all subjects for
the recording site 8 cm above the UESHPZ showed similar decrease in peak pressure
at this location with sRED.. There were no decreases in force in swallow sequences
without the resistive load. One sample t-test was used to test whether correlation
coefficients are significantly different from zero with the listed probability of Type I error (p<0.003) (see also table 1).

Inter-rater agreement

Intra-class correlation techniques showed significant agreement (p<0.001) among all three observers. As seen in the Table 2, inter-class correlation coefficients showed agreement among the three raters. All manometric sites showed significant agreement among raters (p<0.001) with sites p2 and p3 (2 and 3 cm above the upper margin of the UES) having lesser agreement among the eight sites. Agreement among other swallow pressure metrics including PhCI (0.95 with sRED, 0.94 without sRED) and UES nadir pressure (0.90 with sRED, 0.89 without sRED) showed highly significant agreement whereas IBP measurements (-0.04 with sRED, -0.09 without sRED) did not.

DISCUSSION

In this study we determined that application of a resistive load to anterior and superior laryngeal movement during repeated swallows significantly reduces the anterior and superior deglutitive excursion of the larynx as well as UES opening. Moreover, this resistive load fatigues the pharynx as manifested by significant decrease in pharyngeal contractile integral. In addition, further analysis of the data indicated that the fatigue observed in the pharyngeal contractile integral is driven by significant reduction in force in the proximal pharynx commensurate to recording sites at 6, 7 and 8 cm orad to the upper margin of the UES. The reason of this finding merits further investigation but it could simply be due to the masking of the inferior constrictor fatigue by the pressure contribution of posterior tongue thrust. The peristaltic pressure waves in
distal pharynx are the sum effect of both contraction of pharyngeal constrictors and the posterior tongue thrust. The observed finding may mean that tongue muscles were not resistively loaded enough to induce reduction in force in posterior tongue thrust; therefore, the relatively small reduction in the pressure amplitude of the constrictors due to their fatigue could not become manifest by our current experimental technique.

Therapeutic options directly aimed at improving the contractile function of pharyngeal peristalsis are currently limited.(7, 21) These options may be necessary following muscle weakening events like stroke, radiation therapy and surgical interventions. Compromised contractile function can result in post deglutitive residue, aspiration and dysphagia. Various exercises have been shown to strengthen components of the oropharyngeal deglutitive apparatus such as the supra-hyoid UES opening muscles (30) and the tongue musculature.(27) It is known that, for a muscle to strengthen by exercise, neuromuscular fatigue must occur during the exercise. The finding of the present study indicates that repetitive swallowing against an increased load will result in neuromuscular fatigue evidenced by decrease in the peak amplitude of pharyngeal peristaltic pressure waves. This finding paves the way for future studies to directly evaluate the potential improvement in pharyngeal muscle strength and increase in pharyngeal contractile pressure by this approach. The therapeutic relevance of these potential improvements in swallowing strength includes enhancement of pharyngeal clearance in patients with incomplete swallow, abnormal hypopharyngeal residue and aspiration.

One form of strength training is resistance exercise. In resistance exercise training, each effort is performed against a predetermined force generated by the
To apply this principle to swallowing and induced resistance to deglutitive contraction of pharyngeal muscles, we developed a device that was designed to hinder superior and anterior movement of the hyo-laryngeal complex during swallowing as described in the methods section. We used a task-specific strength training approach by creating a predetermined amount of resistance to hyo-laryngeal excursion during swallowing and showed that, 1. The applied resistive load restricts the hyo-laryngeal biomechanics and 2. Confirmed the hypothesis that swallowing against resistance results in fatigue of the pharyngeal constrictors as evidenced by decline in the pharyngeal peristaltic contractile pressure. It is noteworthy that the fatigue in the current study was achieved by the use of volitional activation of the muscles challenged by a load versus using a more passive approach such as enhanced contraction as a result of direct electrical stimulation of the muscle.

One of the prominent features of normal pharyngeal phase of swallowing is the shortening of the pharynx along with the orad movement of the upper esophageal sphincter due to antero-superior movement of hyo-laryngo-cricoid complex by contraction of supra-hyoid, pharyngeal constrictors and longitudinal muscles. These events also include the anterior/superior movement of the cricoid cartilage resulting in the opening of the UES. Since pharyngeal musculature is fixed in their proximal ends to the bony and cartilaginous structure of the skull base and the neck, shortening of the pharynx requires the orad movement of their distal ends. These ends are attached to movable or stretchable organs such as the hyoid bone, thyroid cartilage, cricoid cartilage, cricopharyngeus muscle and proximal esophagus.
Pharyngeal musculature is largely comprised of two layers. The external circular layer consists of superior, middle and inferior constrictors and internal, mostly longitudinal layer that includes two levators, namely, the stylopharyngeous and palatopharyngeous Contraction of these muscles during swallowing result in constriction and shortening of the pharynx and along with posterior thrust of the tongue generates the deglutitive pharyngeal peristaltic pressure wave.

The findings of the fluoroscopic part of the present study suggest that resistance to superior and anterior movement of the hyo-laryngeal complex affects the contraction and shortening of the circular and longitudinal muscles of the pharynx as well as the suprahypoid muscles responsible for superior and anterior excursion of the hyo-laryngeal complex and UES opening. Study findings also indicates that the observed effect is associated with increases in the work load of the involved muscles by exerting resistance against their contraction during swallowing and can potentially be used as task-specific strength training wherein swallowing against resistance strengthens the pharyngeal and suprahypoid muscles.

Strength training exercise can be applicable to the striated muscles of the aerodigestive and digestive tracts. These include the muscles involved in deglutition and continence. There are six principles commonly followed in exercise training to ascertain function improvement. These include specificity, overload, progression, initial values, reversibility and diminishing returns (3). In this study we addressed two of the six exercise training principles, namely specificity and overload. Specificity of the proposed resistive swallow approach for the muscles involved in deglutition isolates the pharyngeal constrictors and suprahypoid muscles and the effect of the proposed
approach is to stress the targeted muscles to the level of fatigue. The reason for these choices are that if the designed approach does not affect the targeted muscles during swallow and these muscles are not overloaded, then other principles will be unachievable. To show that the resistive swallow overloads the target muscles, we evaluated whether repeated swallow against the resistance imparted by the device results in fatigue of the target muscles. We chose the reduction in contractile function of the pharynx as an indicator of fatigue of pharyngeal muscles.

The present study has also showed that applying controlled resistance to deglutitive biomechanical movements safely restricts the superior and anterior excursion of the hyo-laryngeal complex and that such restriction is associated with a significant reduction in the maximum deglutitive opening of the upper esophageal sphincter. In addition to providing a means for overloading the deglutitive pharyngeal muscles and inducing their fatigue conducive to strength training exercises for pharyngeal muscles, the other practical applications of such a restriction may include its use for modeling and simulation of various oropharyngeal disorders encountered following stroke, radiation therapy and surgical interventions.

As a measure of pharyngeal contractile vigor, a primary metric in the present study was the pharyngeal contractile integral. A potential concern regarding this measurement could be the effect of contraction of the pharyngeal constrictors against the increased hydrodynamic resistance associated with attenuated UES opening diameter thereby driving an increase in intrabolus pressure; however, the contribution of increased intrabolus pressure would have resulted in an increase in contractile integral. As shown in the present study, repetitive swallows against sRED resulted in significant
decrease in contractile integral thereby suggesting no or unappreciable effects of an increase in intrabolus pressure.

Our studies however have several limitations. Rehabilitation of pharyngeal muscles involved in swallowing using strength training principles has not been described before. This necessitated an empiric approach for selection of the magnitude of load and number of repetition for causing fatigue in this study. It is anticipated that with the current proof of principle the utilized criteria could potentially be modified in future studies and be adapted to the patient populations that can potentially include those following stroke or radiation therapy for the head and neck malignancy who develop deglutition abnormalities due to pharyngeal weakness.

In summary, swallow against an increased external load induced by restricting the antero-superior excursion of the larynx is safe and effective for inducing fatigue in pharyngeal peristalsis and thus has the potential to strengthen the pharyngeal constrictor muscles. This finding may provide an opportunity to devise therapeutic strategies and pathophysiologic models for pharyngeal phase dysphagia observed in clinical practice.

This project was supported in part by NIH grant P01DK068051, R01DK025731, T32DK061923 and UL1TR001436
LEGENDS

Figure 1

An example of 5ml barium swallow during application of 40 mmHg resistive load by sRED (arrows) before, during, and after passage of the barium through the oral-pharyngeal cavity. As seen the resistive load did not induce penetration or aspiration of the airway, nor did it induce pharyngeal residue.

Please Note in the inset; The concave surface of the sRED encasing the inflatable bag (white) the strap and pressure gauge for controlling the applied pressure to the larynx.

Figure 2

Effect of resistive swallow load on biomechanical event during swallowing of 0.5 and 5 ml liquid barium. As seen, resistive load induced significant restriction on all measured aspects of deglutitive biomechanics. Including laryngeal and hyoid superior and anterior excursions as well as UES opening (p<0.05).

Figure 3

Effect of resistive load induced by sRED on pharyngeal contractile integral during 40 consecutive swallows of 0.5 ml water.

As seen, swallows against resistive load resulted in a progressive reduction in PhCI shown in top panel. Similar reduction was not seen when participants swallowed without
the resistive load shown in the lower panel. In both panels, the red line indicates negative correlation between PhCI and successive swallow (p<0.01).

Figure 4

Epoch wise analysis containing five consecutive PhCI in each epoch with (top panel) and without (bottom panel resistive load.

Analysis of Variance showed significant differences across epochs for PhCI with but not without the application of the resistive load (p<0.01).

Epoch-wise tests corrected for multiple comparisons showed that although there was a progressive decline in PhCI from epoch 1 to epoch 8, differences were driven by significant difference in epoch 2 compared to epoch 8 (p < 0.02).

Figure 5

Peak deglutitive peristaltic wave amplitudes 8 cm above the upper margin of the UESHPZ from one subject.

As seen, there is a progressive decrease in peak contractile pressure during 40 sequential swallows with resistive load induced by wearing the sRED (p<0.05)

Similar decrease is not developed for successive swallows without the resistive load.
REFERENCES

Start of 5 ml swallow (time 0.00 s)

Maximum hyo-laryngeal excursion (time 0.43 s)

sRED inflated to 40 mmHg positioned over larynx

Swallow complete (time 1.73 s)

Figure 1
Figure 2A
Figure 2B
Figure 2C
Figure 2D

Anterior hyoid excursion

5 ml bolus

* p < 0.0001

* p = 0.0023

p = 0.17

Superior hyoid excursion

5 ml bolus

* p = 0.033

p = 0.59

p = 0.25

Figure 2D
Figure 2E
UESD max
5 ml bolus

* \(p < 0.0001 \)

* \(p < 0.0001 \)

* \(p = 0.013 \)

Figure 2F
PCI with sRED

\[y = -1.3868x + 367.07 \]

\[R^2 = 0.6459 \]

sequential swallows in time →

PCI without sRED

\[y = 0.3397x + 295.08 \]

\[R^2 = 0.0579 \]

sequential swallows in time →

Figure 3
Figure 4
Figure 5

p8 peak pressure with sRED

\[y = -0.6998x + 104.2 \]
\[R^2 = 0.2915 \]

sequential swallows in time →

p8 peak pressure without sRED

\[y = 0.0712x + 77.265 \]
\[R^2 = 0.0028 \]

sequential swallows in time →
<table>
<thead>
<tr>
<th>sites</th>
<th>With sRED</th>
<th>Without sRED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Z scored CC</td>
<td>p value</td>
</tr>
<tr>
<td>P2</td>
<td>0.07±0.46</td>
<td>0.74</td>
</tr>
<tr>
<td>P3</td>
<td>-0.21±0.39</td>
<td>0.56</td>
</tr>
<tr>
<td>P4</td>
<td>-0.09±0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>P5</td>
<td>-0.17±0.53</td>
<td>0.21</td>
</tr>
<tr>
<td>P6</td>
<td>-0.28±0.58</td>
<td>0.05</td>
</tr>
<tr>
<td>P7</td>
<td>-0.41±0.59</td>
<td>0.03*</td>
</tr>
<tr>
<td>P8</td>
<td>-0.56±0.34</td>
<td>0.003*</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th></th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC with sRED</td>
<td>0.97</td>
<td>0.98</td>
<td>0.93</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>ICC without sRED</td>
<td>0.96</td>
<td>0.94</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>