Supplementary Figure 1. Double immunogold labeling for stabilin-1/-2 and FITC-FSA in liver sinusoidal endothelial cells

Rat LSECs were incubated with 10 μg/ml FITC-FSA (C-E) for 15 min at 37°C, fixed and processed for immunogold labeling as described in the Materials and Methods. Arrows point to close colocalization of gold-labeled receptor and ligand, indicating direct receptor-ligand binding. Arrow heads point to plasma membrane; CP, coated pits; Scale bars = 200 nm. FITC-FSA = FITC-labeled formaldehyde-treated serum albumin.

A-C) Double labeling of FITC-FSA (5 nm gold) and stabilin-1 (10 nm gold) showed close colocalization in vesicles (A,C) and at the plasma membrane surface (B).

D, E) Close colocalization of stabilin-2 (5 nm gold) and FITC-FSA (10 nm gold) is seen in larger vesicles (D), at the plasma membrane surface (E) and in coated pits (CP in E).
Supplementary Figure 2. Expression of CD36 and LOX-1 in liver sinusoidal endothelial cells

A. Western blots of reduced RIPA extracts of whole rat liver, and isolated LSECs from two different rats. The total amount of cell extract protein added to each lane was 85 μg, 5 μg and 16 μg, respectively. The blots were probed with anti-CD36 antibodies, 1:300. The whole liver extract showed one positive band at ~60 kDa.

B. Western blots of non-reduced RIPA extracts of bovine aorta endothelial cells (bAEC), and LSECs from two different rats. The total amount of cell extract protein added to each lane was 5 μg, 16 μg and 13 μg, respectively. The blots were probed with anti-LOX-1 antibodies, 10 μg/ml. Bovine AEC showed two positive bands at ~58 kDa and ~42 kDa, which represents the pro- and matured forms of LOX-1 respectively.